Abstract. The adaptation of content delivery in systems aimed at teaching is a research area in full expansion. This is explained by studies showing that students tend to have better performances when the content delivery is customized. In this context, students' learning styles should be observed, due to the importance of this feature to the adaptivity process in such systems. Thus, this paper presents an efficient approach for personalization of the teaching process. Our approach is based on the automatic mapping of students' learning styles characteristics to learning objects' metadata. Promising results, obtained through experiments, are presented and demonstrate the soundness of our proposal.Resumo. A adaptação de fornecimento de conteúdo em sistemas voltados para o ensinoé umaárea de pesquisa em franca expansão. Istoé explicado por trabalhos que demonstram que estudantes tendem a ter um maior aproveitamento quando a apresentação do conteúdoé personalizada. Nesse contexto, os estilos de aprendizagem dos estudantes devem ser observados, sendo esta uma das mais importantes características a serem consideradas no processo de adaptatividade nesses sistemas. Dessa forma, este artigo apresenta uma abordagem eficiente para personalização do processo de ensino, que se baseia no mapeamento automático de características de estilos de aprendizagem de estudantes em metadados de objetos de aprendizagem. São apresentados resultados promissores, obtidos por meio de experimentos, que demonstram a validade da proposta.
Several approaches to personalized recommendation of content in adaptive systems for education have emerged. Many of them have considered the importance of taking into account students' learning styles in order to achieve better results in the learning process. Recent studies confirm this trend. Thus, this work aims to present an ontology to support these approaches, using as a basis the IEEE LOM and the model of Felder-Silverman for learning styles. As a result, the proposed ontology generates a vectorial representation of learning objects considering its teaching styles. The ontology has been validated through experiments, and promising results were obtained, demonstrating the potencial contribution of the proposal to adaptive systems for education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.