In this paper, the peak stress method (PSM) is adopted to analyse the fatigue strength of steel welded joints. According to this method, a single design curve is expressed in terms of a properly defined equivalent peak stress and it is valid for fatigue design of arc-welded steel joints. Private companies often need simple finite element beam models for fatigue strength assessments, because of the large dimensions of the structures. However, beam elements provide nominal stresses (and not local stresses) that must be compared with appropriate fatigue strength values (the FAT classes) available in design standards. Due to the limited number of FAT classes available, finding the appropriate one is frequently troublesome, particularly when complex geometries are considered. The objective of this work is to define FAT classes in terms of nominal stress for a number of geometrically complex structural details, starting from the design curve of the PSM. FAT classes have also been determined using the hot spot stress approach. Then the results obtained with the two methods are compared. The structural details analysed in the present paper are typically adopted in amusement park structures and are not classified in common design standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.