Concerns over the past few decades have focused, more than ever, on finding and implementing efficient, handy, and renewable sources to reduce pollution. Biomass, in general, and biomass from annual vine cuttings, are renewable sources that can be used by a large amount of the population. Biomass densification in the form of briquettes is an efficient method of obtaining a biofuel with the same characteristics as wood. The production of densified material as a briquette consists of sampling, drying naturally, chopping, grinding and briquetting the vine cuttings. The obtained results showed that the size of the briquettes met the requirements imposed by the standard, with a length between 185 mm and 400 mm and a diameter of 58 ± 0.75 mm, the humidity of the briquettes varying between 5.42%, at Sauvignon Blanc and 7.98% for Pinot Noir, while the durability of the briquettes registered minimum values of 98.17% for Muscat Ottonel and a maximum of 99.14% for Feteasca Neagra, and a unit density with values between 1227 kg/m3 for Feteasca Alba and 1389 kg/m3 for Pinot Noir. The conclusions of these experiments are promising, showing that the densification of biomass from vines cuttings qualifies within the standard requirements for obtaining a valuable biofuel.
Inadequate production practices are widely used in aquaculture management, causing excessive water and energy usage, as well as ecological damage. New approaches to sustainable aquaculture attempt to increase production efficiency, while reducing the quantities generated of wastewater and sludge. The sustainable operating techniques are often ineffective, expensive, and difficult to implement. The present article proposes a zero-waste production system, designed for growing fish and vegetables, using a new circular operational concept that creates synergies between fish farming and horticulture. In order to optimize the operational flows with resources, products, and wastes in an integrated zero-waste food production cluster, a business model was designed associating three ecological production practices: a closed fishing pond, a technology for growing vegetables in straw bales, and a composting system. The design had the role to assist the transition toward multiple circular material flows, where the waste can be fully reintegrated into the production processes. A comparative evaluation was conducted in three alternative growing environments, namely, a soilless culture established in straw bales, a culture grown in soil that had received compost fertilizer, and the conventional farming technique. When compared to conventional methods, experiments showed a significant increase in the cluster’s cumulative productivity, resulting in a 12% improvement in energy efficiency, 18% increase in food production, and 25% decrease in operating expenses.
Every year, the global food industry produces a significant number of wastes and by-products from a variety of sources. By-products from the food-processing sector are produced in large quantities, and because of their undesirable qualities, they are frequently wasted, losing important resources. In order to pursue a circular economy that refers to waste reduction and effective waste management, by-products valorization recently received increased interest. By-products are rich in bioactive compounds and can be used in various industrial applications for health promotion and nutritional benefits. A novel step in its sustainable application is the use of these inexpensive waste agri-food by-products to create the value-added products. The present review intended to summarize the different types of agro-industrial by-products and their properties and highlight their nutritional composition and potential health benefits. Applications of agri-food by-products in foods as well as the potential health and sustainability implications of by-products in food products were also covered. According to research, agri-food by-products can be added to a variety of food to increase their bioactive profile, fiber content, and antioxidant capacity while maintaining good sensory acceptability. Overall, the sustainability of the agri-food chain and consumer health can both benefit from the use of agri-food by-products in food formulation.
The global impact of climate change, with the potential to affect agriculture through changes in temperature, rainwater distribution and amount, leads to the need to develop integrated technologies that increase rain use efficiency and support soil and environmental quality, ensuring higher agricultural outputs with lower costs. Soil modeling in interrupted furrows is a very efficient rainwater harvesting system, but has not yet been scientifically assessed for the conditions in Southern Romania as the other soil working systems have been. For this purpose, a soil modeling device consisting of a frame with triangle for coupling to the tractor, wheels for adjusting and limiting the working depth, soil loosening knives, ridge ploughs and furrow compartmenting equipment was compared with the conventional technology for sunflower culture in two localities in Southern Romania: Crânguri in Giurgiu County and Mărculeşti in Calarasi County. The device for soil modeling in interrupted furrows for weeding crops provides a viable option that has positive effects on soil properties and ensures increased crop yields compared to conventional works as well as the opportunity to increase the efficiency of water recovery in agriculture by harvesting rainwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.