A model of arsenic clustering in silicon is proposed and analyzed. The main
feature of the proposed model is the assumption that negatively charged arsenic
complexes play a dominant role in the clustering process. To confirm this
assumption, electron density and concentration of impurity atoms incorporated
into the clusters are calculated as functions of the total arsenic
concentration. A number of the negatively charged clusters incorporating a
point defect and one or more arsenic atoms are investigated. It is shown that
for the doubly negatively charged clusters or for clusters incorporating more
than one arsenic atom the electron density reaches a maximum value and then
monotonically and slowly decreases as total arsenic concentration increases. In
the case of doubly negatively charged cluster incorporating two arsenic atoms,
the calculated electron density agrees well with the experimental data.
Agreement with the experiment confirms the conclusion that two arsenic atoms
participate in the cluster formation. Among all present models, the proposed
model of clustering by formation of doubly negatively charged cluster
incorporating two arsenic atoms gives the best fit to the experimental data and
can be used in simulation of high concentration arsenic diffusion.Comment: 13 pages, 4 figures. Revised and shortened version of the paper has
been published in Phys. Rev. B, Vol.74 (3), art. no. 035205 (2006
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.