We report the characterization of strain components in transistor structures with silicon–germanium (Si0.75Ge0.25) and silicon–carbon (Si0.99C0.01) stressors grown by selective epitaxy in the source and drain regions. The spacing between the source and drain stressors is 35nm. Lattice strain analysis was performed using high-resolution transmission electron microscopy (HRTEM) and diffractograms obtained by fast Fourier transform of HRTEM images. The lateral strain component εxx and the vertical strain component εzz were derived from the (220) and (002) reflections in the diffractogram, respectively. SiGe source and drain stressors lead to lateral compressive strain and vertical tensile strain in the Si channel. On the other hand, the SiC source and drain stressors give rise to lateral tensile strain and vertical compressive strain in the Si channel, an effect complementary to that of SiGe source∕drain stressors. The results of this work will be useful for channel strain engineering in complementary metal-oxide-semiconductor transistors.
Metalenses made of artificial sub-wavelength nanostructures have shown the capability of light focusing and imaging with a miniaturized size. Here, we report the demonstration of mass-producible amorphous silicon metalenses on a 12-inch glass wafer via the complementary metal-oxide-semiconductor compatible process. The measured numerical aperture of the fabricated metalens is 0.496 with a focusing spot size of 1.26 μm at the wavelength of 940 nm. The metalens is applied in an imaging system to test the imaging resolution. The minimum bar of the resolution chart with a width of 2.19 μm is clearly observed. Furthermore, the same system demonstrates the imaging of a fingerprint, and proofs the concept of using metalens array to reduce the system size for future compact consumer electronics.
The demonstration of a color display metasurface on a 12-inch silicon wafer with critical dimension (CD) below 100 nm by complementary metal-oxide semiconductor (CMOS) compatible technology is reported for the first time. The 193 nm ArF deep UV immersion lithography is leveraged instead of electron beam lithography (EBL) to pattern the metasurface, which greatly improves the efficiency while keeping a high resolution. The demonstrated metasurface successfully generates the resonant modes and reflects the lights at resonance wavelengths, giving its display in red, green, and blue (RGB) colors. The wafer-level uniformities of CD and reflection characteristic of the metasurface are measured and analyzed. The experimental data show that they are well controlled in the fabrication process. The work provides a promising route towards mass production of dielectric metasurfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.