This paper describes two-way time transfer over an optical network. The method is based on newly developed adapters utilizing channels in a DWDM (Dense Wavelength-Division Multiplexing) all-optical network. Results of several tests performed in real production network including the time transfer between atomic clocks in Prague and Vienna over more than 500 km long optical link are presented. In addition, the comparison of Common View GPS and optical time transfers is given.
Challenging experiments for tests in fundamental physics require highly coherent optical frequency references with suppressed phase noise from hundreds of kHz down to μHz of Fourier frequencies. It can be achieved by remote synchronization of many frequency references interconnected by stabilized optical fibre links. Here we describe the path to realize a delocalized optical frequency reference for spectroscopy of the isomeric state of the nucleus of Thorium-229 atom. This is a prerequisite for the realization of the next generation of an optical clock – the nuclear clock. We present the established 235 km long phase-coherent stabilized cross-border fibre link connecting two delocalized metrology laboratories in Brno and Vienna operating highly-coherent lasers disciplined by active Hydrogen masers through optical frequency combs. A significant part (up to tens of km) of the optical fibre is passing urban combined collectors with a non-negligible level of acoustic interference and temperature changes, which results in a power spectral density of phase noise over 105 rad2· Hz-1. Therefore, we deploy a digital signal processing technique to suppress the fibre phase noise over a wide dynamic range of phase fluctuations. To demonstrate the functionality of the link, we measured the phase noise power spectral density of a remote beat note between two independent lasers, locked to high-finesse stable resonators. Using optical frequency combs at both ends of the link, a long-term fractional frequency stability in the order of 10−15 between local active Hydrogen masers was measured as well. Thanks to this technique, we have achieved reliable operation of the phase-coherent fibre link with fractional stability of 7 × 10−18 in 103 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.