Hybrid organic–inorganic perovskites, while well examined for photovoltaic applications, remain almost completely unexplored in the terahertz (THz) range. These low-cost hybrid materials are extremely attractive for THz applications because their optoelectronic properties can be chemically engineered with relative ease. Here, we experimentally demonstrate the first attempt to apply solution-processed polycrystalline films of hybrid perovskites for the development of photoconductive terahertz emitters. By using the widely studied methylammonium-based perovskites MAPbI3 and MAPbBr3, we fabricate and characterize large-aperture photoconductive antennas. The work presented here examines polycrystalline perovskite films excited both above and below the bandgap, as well as the scaling of THz emission with the applied bias field and the optical excitation fluence. The combination of ultrafast time-resolved spectroscopy and terahertz emission experiments allows us to determine the still-debated room temperature carrier lifetime and mobility of charge carriers in halide perovskites using an alternative noninvasive method. Our results demonstrate the applicability of hybrid perovskites for the development of scalable THz photoconductive devices, making these materials competitive with conventional semiconductors for THz emission.
The generation of terahertz radiation in a photoconductive emitter based on nitrogen-doped single-crystal diamond was realized for the first time. Under 400 nm femtosecond laser pumping, the performance of diamond antennas with different dopant levels was investigated and compared with a reference ZnSe antenna. Terahertz waveforms and corresponding spectra were measured. A low saturation level for high-nitrogen-containing diamond substrate was revealed. The results indicate the prospects of doped diamond as a material for high-efficiency large-aperture photoconductive antennas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.