Thin film polycrystalline silicon (poly-Si) solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ). Tested temperature of the sample (55°C – 110°C) was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.
The magnesium silicide nanoparticles were formed on the surface of hydrogenated silicon thin films by thermal evaporation, annealing and hydrogen plasma treatment. The high reactivity of silicon and magnesium leads to the self-formation of magnesium silicide nanoparticles (NPs). The reaction is stimulated in-situ by the low pressure hydrogen plasma. The presence of Mg2Si NPs was confirmed by SEM and Raman spectroscopy. The photothermal deflection spectroscopy (PDS) shows the enhanced optical absorption in the near infrared spectrum. The diode structures with insitu embedded Mg2Si NPs were characterized by the volt-ampere measurements in dark and under AM1.5 spectrum.
The magnesium silicide nanoparticles were formed on the surface of hydrogenated silicon thin films by thermal evaporation, annealing and hydrogen plasma treatment. The high reactivity of silicon and magnesium leads to the self-formation of magnesium silicide nanoparticles (NPs). The reaction is stimulated in-situ by the low pressure hydrogen plasma. The presence of Mg2Si NPs was confirmed by SEM and Raman spectroscopy. The photothermal deflection spectroscopy (PDS) shows the enhanced optical absorption in the near infrared spectrum. The diode structures with insitu embedded Mg2Si NPs were characterized by the volt-ampere measurements in dark and under AM1.5 spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.