This study was carried out to investigate the effect of Aloe vera extract (AvE) on serum electrolytes, urea, and creatinine as indices of renal function in Sprague-Dawley rats. Twelve male Sprague-Dawley rats weighing between 80 and 130 g were used. Rats were divided into two groups: The control and the test groups (n=6). The test group received 1 ml of AvE daily for 28 days. Both the groups fed on standard rat chow and water ad libitum. The results showed a decrease in serum levels of sodium, and potassium, but an increase in the serum levels of bicarbonate, urea, and creatinine in the test group. The changes seen were, however, statistically insignificant, except for the serum levels of sodium and creatinine (P<0.05). It is thus concluded that AvE impairs renal handling of electrolytes with consequent hyponatremia and hypercreatinemia. However, this might be of therapeutic value in conditions associated with hypernatremia.
ObjectivesCardiovascular diseases are major causes of non-infectious diseases globally. The use of pesticides has been linked with the high global burden of non-communicable diseases. Despite the indiscriminate exposure to dichlorvos (DDVP) by inhalation, no report exists on its possible cardiotoxic effect. This study investigated the cardiotoxicity of DDVP exposure by inhalation and the possible role of Moringa oleifera seed oil.MethodsTwenty-one male rats were randomly assigned into 3 groups. Group A (control) received only standard rat diet and water ad’ libitum, group B (DDVP) was exposed to DDVP via inhalation for 15 min daily in addition to rat diet and water, and group C (DDVP + M. oleifera seed oil) received treatment as group B as well as 300 mg/kg of M. oleifera seed oil p.o for 28 days.ResultsSignificant reductions in body weight gain and cardiac weight were observed in DDVP-exposed animals (p<0.05). Similarly, 28 days of exposure to DDVP led to a significant increase in lactate dehydrogenase, creatinine kinase and troponin (p<0.05). DDVP-exposed rats also showed a significant increase in malondialdehyde, and a significant decline in superoxide dismutase and glutathione peroxidase (p<0.05). However, catalase was comparable in DDVP-exposed and control rats. Histopathological observations of the cardiac tissue revealed that DDVP caused marked fat degeneration and necrosis of the myocardial layer. The changes in DDVP-exposed rats were significantly, though not completely, restored by M. oleifera seed oil administration.ConclusionsThis study provides novel mechanistic information on the cardiotoxicity of DDVP inhalation, and the antioxidant potential of M. oleifera seed oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.