We propose an active multilayer mirror structure for extreme ultraviolet (EUV) wavelengths, which can be adjusted to compensate for reflectance changes. The multilayer structure tunes the reflectance via an integrated piezoelectric layer that can change its dimension due to an externally applied voltage. Here, we present design and optimization of the mirror structure for maximum reflectance tuning. In addition, we present preliminary results showing that the deposition of piezoelectric thin films with the requisite layer smoothness and crystal structure is possible. Finally piezoelectric coefficient measurement (d
33 = 60 pm V−1) of the film is presented.
Atomic force microscopy is one of the most popular imaging tools with atomic resolution in different research fields. Here, a fast and gentle side approach for atomic force microscopy is proposed to image the same surface location and to reduce the time delay between modification and imaging without significant tip degradation. This reproducible approach to image the same surface location using atomic force microscopy shortly after, for example, any biological, chemical, or physical modification on a geometrically separated position has the potential to become widely used.
The energetics of vicinal SrTiO$_3$(001) and DyScO$_3$(110), prototypical
perovskite vicinal surfaces, has been studied using topographic atomic force
microscopy imaging. The kink formation and strain relaxation energies are
extracted from a statistical analysis of the step meandering. Both perovskite
surfaces have very similar kink formation energies and exhibit a similar
triangular step undulation. Our experiments suggest that the energetics of
perovskite oxide surfaces is mainly governed by the local oxygen coordination.Comment: 16 pages, 4 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.