X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point onï£ij the accretion disk, and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I ∝ ln(1 + 1/µ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be over-estimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constrain of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.
We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk.The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Γ of the illuminating radiation, the ionization parameter ξ at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A Fe relative to the solar value. The ranges of the parameters covered are: 1.2 ≤ Γ ≤ 3.4, 1 ≤ ξ ≤ 10 4 , and 0.5 ≤ A Fe ≤ 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellarmass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file 1 suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver. 1997; Dauser et al. 2013). The presence of this dense (n H 10 12 cm −3 ), warm (T ∼ 10 5 − 10 7 K), and optically-thick (τ T 1) medium is also supported by the detection of atomic features from several ions. These and other features constitute an important component of the X-ray -5spectrum observed from accreting sources, resulting from the reprocessing of radiation by the material in the disk. This component is commonly referred to as reflection, in the sense that it is the result of radiation that is returned from the accretion disk by fluorescence or electron scattering. The current paradigm is that the original power-law radiation irradiates the surface of the accretion disk. The X-ray photons then interact with the material producing diverse atomic features. These can be produced both via absorption (mostly in form of edges), and emission (in form of fluorescence lines and radiative recombination continua, RRC). Therefore, the reflection component provides direct information about structure, temperature, ionization stage, and composition of the gas in the accretion disk.The presence of the Fe K-shell fluorescence emission and the absorption K-edge observed in the 6 − 8 keV energy range are recognized as strong evidence for reflection.X-ray photons that are photoelectrically absorbed have enough energy to remove a 1s electron from its K-shell, leaving it in a quasi-bound state above the continuum (autoionizing state). The K-hole is then filled by an electron, and the energy difference can be released by emitting a second electron (Auger process), or by the emission of a K-shell photon....
Aims. The only relativistic reflection model that implements a parameter relating the intensity incident on an accretion disk to the observed intensity is relxill. The parameter used in earlier versions of this model, referred to as the reflection strength, is unsatisfactory; it has been superseded by a parameter that provides insight into the accretion geometry, namely the reflection fraction. The reflection fraction is defined as the ratio of the coronal intensity illuminating the disk to the coronal intensity that reaches the observer. Methods. The relxill model combines a general relativistic ray-tracing code and a photoionization code to compute the component of radiation reflected from an accretion that is illuminated by an external source. The reflection fraction is a particularly important parameter for relativistic models with well-defined geometry, such as the lamp post model, which is a focus of this paper. Results. Relativistic spectra are compared for three inclinations and for four values of the key parameter of the lamp post model, namely the height above the black hole of the illuminating, on-axis point source. In all cases, the strongest reflection is produced for low source heights and high spin. A low-spin black hole is shown to be incapable of producing enhanced relativistic reflection. Results for the relxill model are compared to those obtained with other models and a Monte Carlo simulation. Conclusions. Fitting data by using the relxill model and the recently implemented reflection fraction, the geometry of a system can be constrained. The reflection fraction is independent of system parameters such as inclination and black hole spin. The reflectionfraction parameter was implemented with the name refl_frac in all flavours of the relxill model, and the non-relativistic reflection model xillver, in v0.4a (18 January 2016).
Continuum and reflection spectral models have each been widely employed in measuring the spins of accreting black holes. However, the two approaches have not been implemented together in a photon-conserving, selfconsistent framework. We develop such a framework using the black hole X-ray binary GX339-4 as a touchstone source, and we demonstrate three important ramifications.(1) Compton scattering of reflection emission in the corona is routinely ignored, but is an essential consideration given that reflection is linked to the regimes with strongest Comptonization. Properly accounting for this causes the inferred reflection fraction to increase substantially, especially for the hard state. Another important impact of the Comptonization of reflection emission by the corona is the downscattered tail. Downscattering has the potential to mimic the relativistically broadened red wing of the Fe line associated with a spinning black hole. (2) Recent evidence for a reflection component with a harder spectral index than the power-law continuum is naturally explained as Compton-scattered reflection emission. (3) Photon conservation provides an important constraint on the hard state's accretion rate. For bright hard states, we show that disk truncation to large scales R R ISCO is unlikely as this would require accretion rates far in excess of the observed Ṁ of the brightest soft states. Our principal conclusion is that when modeling relativistically broadened reflection, spectral models should allow for coronal Compton scattering of the reflection features, and when possible, take advantage of the additional constraining power from linking to the thermal disk component.
We present a comprehensive analysis of the whole sample of available XMM-Newton observations of high-mass X-ray binaries (HMXBs) until August 2013, focusing on the FeKα emission line. This line is key to better understanding the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We collected observations from 46 HMXBs and detected FeKα in 21 of them. We used the standard classification of HMXBs to divide the sample into different groups. We find that (1) (4) We observe an inverse correlation between the X-ray luminosity and the equivalent width of FeKα (EW). This phenomenon is known as the X-ray Baldwin effect. (5) FeKα is narrow (σ line < 0.15 keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering, and Doppler shifts (with velocities of the reprocessing material V ∼ 1000 km s −1 ). (6) The equivalent hydrogen column (N H ) directly correlates to the EW of FeKα, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. (7) The observed N H in supergiant X-ray binaries (SGXBs) is in general higher than in supergiant fast X-ray transients (SFXTs). We suggest two possible explanations: different orbital configurations or a different interaction compact object -wind. (8) Finally, we analysed the sources IGR J16320-4751 and 4U 1700-37 in more detail, covering several orbital phases. The observed variation in N H between phases is compatible with the absorption produced by the wind of their optical companions. The results clearly point to a very important contribution of the donor's wind in the FeKα emission and the absorption when the donor is a supergiant massive star.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.