An experimental study is described to investigate the negative effects of the tip clearance gap on the aerodynamic and acoustic performance of axial turbomachines. In addition to the increased broadband levels reported in the literature when the tip clearance is enlarged, significant level increases were observed within narrow frequency bands below the blade passing frequency. Measurements of the pressure and velocity fluctuations in the vicinity of the blade tips reveal that the tip clearance noise is associated with a rotating flow instability at the blade tip, which in turn is only present under reversed flow conditions in the tip clearance gap. A turbulence generator inserted into the tip clearance gap is found to be effective in eliminating the tip clearance noise and in improving the aerodynamic performance.
This paper reports on an experimental and numerical investigation aimed at understanding the mechanisms of rotating instabilities in a low speed axial flow compressor. The phenomena of rotating instabilities in the current compressor were first identified with an experimental study. Then, an unsteady numerical method was applied to confirm the phenomena and to interrogate the physical mechanisms behind them. The experimental study was conducted with high-resolution pressure measurements at different clearances, employing a double phase-averaging technique. The numerical investigation was performed with an unsteady 3-D Navier-Stokes method that solves for the entire blade row. The current study reveals that a vortex structure forms near the leading edge plane. This vortex is the result of interactions among the classical tip-clearance flow, axially reversed endwall flow, and the incoming flow. The vortex travels from the suction side to the pressure side of the passage at roughly half of the rotor speed. The formation and movement of this vortex seem to be the main causes of unsteadiness when rotating instability develops. Due to the nature of this vortex, the classical tip clearance flow does not spill over into the following blade passage. This behavior of the tip clearance flow is why the compressor operates in a stable mode even with the rotating instability, unlike traditional rotating stall phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.