TiC nanofibers reinforced Al matrix composites were produced by High Frequency Induction Heat Sintering (HFIHS).The titanium carbide nanofibers with an average diameter of 90 nm are first prepared by electrospinning technique and high temperature calcination process. A composite solution containing polyacrylonitrile and titanium isopropoxide is first electrospun into the nanofibers, which are subsequently stabilized and then calcined to produce the desired TiC nanofibers. The X-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The TiC nanofibers is then mixed with the aluminum powders and introduced into high frequency induction heat sintering (HFIHS) to produce composites of TiC nanofibers reinforced aluminum matrix. The potential application of the TiC nanofibers reinforced aluminum matrix composites was systematically investigated. 99.5% relative density and around 85 HV (833 MPa) Vickers hardness of the Al reinforced with 5 wt % TiC nanofiber has been obtained. Furthermore, the sample of Al contains 5 wt % TiC, has the highest value of compression and yield strength of about 415 and 350 MPa, respectively. The ductility of the Al/5 wt % TiC showed increasing with increasing the TiC contents.
Microelectromechanical systems (MEMS) are made of components in the range of 1 to 100 micrometers. These systems have a large application in electrical and electronic devices. The manufacturing of MEMS categorized under semiconductor device branch fabrication. The performance of such precision material very strongly depended on the mechanical and fracture properties of the composite material they get fabricated from. A MEMS thin strips are manufactured by bonding a thin copper film on a substrate of glass-reinforced laminated fabric with an epoxy resin binder. Generally, the tested samples are glass fiber laminates with a 1.5mm thickness having 35-micron copper layer. Two sets of samples were cut; first ones are in the form of a flat specimen with a small hole at the center for size effect tests whereas, the second ones are double edge notch (DENT) specimens for essential work of fracture tests. The fracture toughness of such material is measured using essential work of fracture tests. These types of material are considered a quasi-brittle material which mainly anisotropic material, therefore, the size effect is tested over this material. The results showed that the essential work of fracture for this MEMS material is measured as 72.883 / 2 and is subject to size effect which make a reduction in nominal strength namely 15%.
A comparison between TiO2 nanofibers and carbon nanofibers as fibers reinforced metal matrix composites with respect to mechanical properties improvements have been made in this paper. Al and Mg have been chosen as metal matrices. The used carbon and ceramic nanofibers (Titanium Oxide) were successfully synthesized using electrospinning technique. Various weight percentage of calcined electrospun TiO2 and carbon nanofibers (1, 3, 5 and 10%) were mixed with metal matrix and fabricated by route of powder metallurgy using High Frequency Induction heat Sintering (HFIHS). Mechanical properties of the sintered composites have been investigated. The manufactured pellets were tested for compression test, hardness and microstructures by the field emission scanning electron microscopes (FESEM), which reveals the homogeneous distribution of nanofibers in the Al/Mg matrices. In addition, energy-dispersive X-ray spectroscopy (EDS) was employed to obtain the chemical analysis of each composite. The result shows that, the ultimate compressive strength increased to 415 MPa at 5% TiO2, which is 13.5% more than the pure Al. The hardness increased up to 64% in case of using the ceramic nanofibers as reinforcement. While using CNFs as reinforcement to the Al matrix deteriorates the mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.