Chronic kidney disease with hyperphosphatemia is associated with accelerated atherosclerosis and endothelial dysfunction. However, the contribution of high serum phosphate levels to endothelial injury is incompletely understood. The aim of this work was to evaluate the responses of endothelial cells to elevated levels of extracellular phosphate in vitro. High phosphate in concentrations similar to those observed in uremia-associated hyperphosphatemia (>2.5 mM) induced apoptosis in two endothelial cell lines (EAhy926 cells and GM-7373 cells). This effect was enhanced when cells were incubated for 24 h in the presence of 2.8 mM calcium instead of 1.8 mM. By treating cells with 0.5 or 1.0 mM phosphonoformic acid, an inhibitor of the phosphate transporter, death was completely prevented. The process of phosphate-induced apoptosis was further characterized by increased oxidative stress, as detected by increased ROS generation and disruption of the mitochondrial membrane potential at approximately 2 h after treatment, followed by caspase activation. These findings show that hyperphosphatemia causes endothelial cell apoptosis, a process that impairs endothelial integrity. Endothelial cell injury induced by high phosphate concentrations may be an initial event leading to vascular complications in patients with chronic kidney disease.
Certain secretory cells in the hypophysial pars tuberalis of the Djungarian hamster display marked circannual structural alterations. The present investigation deals with the immunohistochemical properties of this cell group. A distinct TSH-like immunoreactivity was found in secretory cells of this type in the pars tuberalis of animals exposed to long photoperiods, whereas under short photoperiods the TSH-like immunoreactivity was nearly absent. In the pars distalis, the number and distribution of TSH-positive cells did not differ significantly between animals maintained under long and under short photoperiods. LH- and FSH-positive cells could not be detected in the pars tuberalis, but they are clearly present in the pars distalis of both groups of hamsters. Our immunocytochemical results suggest that photoperiodic stimuli influence the secretory activity of TSH-like immunoreactive cells in the pars tuberalis. A connection with the neuroendrocrine-thyroid axis is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.