Hessian fly is one of the world's most destructive insect pests of wheat Triticum aestivum L. We have used the combination of near-isogenic lines (NIL) and random amplified polymorphic DNA (RAPD) analysis to screen up to 2,000 primers to identify DNA markers that are linked to gene H6 that confers resistance to biotype B of the insect. This screen produced six primers that show polymorphic fragments associated with resistance by H6. We have screened 440 F(2) individuals from a cross of the susceptible cultivar Newton and a NIL that contains H6 to verify the linkage between these markers and the resistance gene. A high-resolution genetic map was constructed based on recombination frequency. Two of the markers were tightly linked to the gene with no recombination observed, three were within 2.0 cM, and one was 11 cM from the gene. Three of the six markers were successfully converted to sequence tagged site (STS) markers. Both RAPD and STS primers were used to screen for the presence or absence of the resistance gene in wheat varieties. The identification of markers and construction of the genetic high resolution map provide the first steps toward localization of this resistance gene.
The generation of ions in air has several useful applications, such as electrohydrodynamic (EHD) pumping, air purification and isolation breakdown prevention. In this paper, ion generation processes in atmospheric air are simulated using a Direct Simulation Monte Carlo (DSMC) method. Details of the collision model are discussed. A C++ code is developed to implement the Monte Carlo method with cross-section data compiled from the literature. Self-sustaining discharge and ionization can be reproduced in the simulation under sufficient voltage bias, and the associated trends obtained are similar to those predicted by Paschen’s curve for a parallel-plate configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.