A nanochannel array structure was applied to realize enhancement-mode high electron mobility transistors based on AlGaN/AlN/GaN-heterostructures grown on Si substrates using a SiC transition layer. The fabricated nanochannel array HEMT, consisting of 78 channels connected in parallel with a channel width of 100 nm defined by electron-beam lithography and dry etching, shows a threshold voltage of 0.35 V. The high electron mobility transistors with LG= 0.2 μm had a maximum drain current density of 445 mA/mm and a peak extrinsic tranconductance of 235 mS/mm. A unity current gain cut-off frequency of 30 GHz and maximum oscillation frequency of 40 GHz were measured on these devices.
We present the realization of high electron mobility transistors (HEMTs) based on AlGaN/GaN heterostructures grown on silicon substrates using a SiC transition layer. The growth of AlGaN/GaN heterostructures on Si (111) was performed using metalorganic chemical vapour deposition (MOCVD). The (111) SiC transition layer was realized by low pressure CVD and prevented Ga-induced meltback etching and Si-outdiffusion in the subsequent MOCVD growth. The two-dimensional electron gas (2DEG) formed at the AlGaN/GaN interface showed an electron sheet density of 1.5x1013 cm-3 and a mobility of 870 cm²/Vs proving the high structural quality of the heterostructure. Device processing was done using electron beam lithography. DC and RF characteristics were analysed and showed a peak cut-off frequency as high as 6 GHz for a 1.2 µm gate HEMT.
Al0.35Ga0.65N/GaN- and Al0.2Ga0.8N/AlN/GaN-heterostructures high electron mobility transistors (HEMTs) with a gate length (LG) varying from 1.2 to 0.08 µm were fabricated on silicon Si(111) substrates using a 3C-SiC transition layer. Metal organic chemical vapour deposition (MOCVD) was used to growth the AlGaN-heterostructures and a low pressure chemical vapour deposition (LPCVD) to create the 3C-SiC(111) transition layer preventing Ga-induced melt back etching and Si-out diffusion. Reduced Al content and an AlN interlayer improved the device performance. The HEMTs with LG=0.08µm had a maximum drain current density of 1.25 A/mm and a peak extrinsic transconductance of 400 mS/mm. A unity current gain cut-off frequency (ƒT) of 180 GHz and maximum frequency (ƒmax) of 70 GHz were measured on these devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.