In this work we study the cross-linked poly(vinyl alcohol)/poly(3-hexylthiophene) interfacial properties of an organic field effect transistor. We use cross-linked poly(vinyl alcohol) prepared with different ammonium dichromate:poly(vinyl alcohol) proportions, ranging from 0% to 35%, as insulator. Using admittance spectroscopy, we show that the interfacial properties change when the ammonium dichromate concentration is altered. The interfacial properties and the better insulation are responsible for the improvement of the device performance in these organic field effect transistors, achieving best performance in the blend with ammonium dichromate:poly(vinyl alcohol) proportion of 0.25:1.
We report the preparation of low gate leakage current organic field effect transistors in vertical architecture using polyvinyl alcohol as gate insulator and C60 fullerene as n-type semiconductor in devices with gate, source, and drain electrodes of Al. Intermediate electrode and top electrode operate, respectively, as source and drain, or vice-versa, depending on polarity. In these devices the intermediate electrode (source or drain) is permeable to the electric field produced by the gate so that increased drain current is obtained at either increasingly negative gate voltage when the source is the intermediate electrode or increasingly positive gate voltage when the drain is the intermediate electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.