We assessed the growth performance, physiological traits, and gene expressions in steers fed with dietary rumen-protected L-tryptophan (RPT) under a cold environment. Eight Korean native steers were assigned to two dietary groups, no RPT (Control) and RPT (0.1% RPT supplementation on a dry matter basis) for six weeks. Maximum and minimum temperatures throughout the experiment were 6.7 °C and −7.0 °C, respectively. Supplementation of 0.1% RPT to a total mixed ration did not increase body weight but had positive effects of elevating average daily gain (ADG) and reducing the feed conversion ratio (FCR) on days 27 and 48. The metabolic parameter showed a higher glucose level (on day 27) in the 0.1% RPT group compared to the control group. Real-time PCR analysis showed no significant differences in the expression of muscle (MYF6, MyoD, and Desmin) metabolism genes between the two groups, whereas the expression of fat (PPARγ, C/EBPα, and FABP4) metabolism genes was lower in the 0.1% RPT group than in the control group. Thus, we demonstrate that long-term (six weeks) dietary supplementation of 0.1% RPT was beneficial owing to enhanced growth performance by increasing the ADG and glucose level, decreasing FCR, and maintaining homeostasis in immune responses in beef steers in a cold environment.
This study investigated the effects of dietary rumen-protected L-tryptophan (TRP) supplementation (43.4 mg of L-tryptophan kg −1 body weigt [BW]) for 65 days in Hanwoo steers on muscle development related to gene expressions and adipose tissue catabolism and fatty acid transportation in longissimus dorsi muscles. Eight Hanwoo steers (initial BW = 424.6 kg [SD 42.3]; 477 days old [SD 4.8]) were randomly allocated to two groups (n = 4) of control and treatment and were supplied with total mixed ration (TMR). The treatment group was fed with 15 g of rumen-protected TRP (0.1% of TMR as-fed basis equal to 43.4 mg of TRP kg −1 BW) once a day at 0800 h as top-dressed to TMR. Blood samples were collected 3 times, at 0, 5, and 10 weeks of the experiment, for assessment of hematological and biochemical parameters. For gene study, the longissimus dorsi muscle samples (12 to 13 ribs, approximately 2 g) were collected from each individual by biopsy at end of the study (10 weeks). Growth performance parameters including final BW, average daily gain, and gain to feed ratio, were not different (p > 0.05) between the two groups. Hematological parameters including granulocyte, lymphocyte, monocyte, platelet, red blood cell, hematocrit, and white blood cell showed no difference (p > 0.05) between the two groups except for hemoglobin (p = 0.025), which was higher in the treatment than in the control group. Serum biochemical parameters including total protein, albumin, globulin, blood urea nitrogen, creatinine phosphokinase, glucose, nonesterified fatty acids, and triglyceride also showed no differences between the two groups (p > 0.05). Gene expression related to muscle development (Myogenic factor 6 [MYF6], myogenine [MyoG]), adipose tissue catabolism (lipoprotein lipase [LPL]), and fatty acid transformation indicator (fatty acid binding protein 4 [FABP4]) were increased in the treatment group compared to the control group (p < 0.05). Collectively, supplementation of TRP (65 days in this study) promotes muscle development and increases the ability of the animals to catab
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.