Phytohormones (PHs) play crucial role in regulation of various physiological and biochemical processes that govern plant growth and yield under optimal and stress conditions. The interaction of these PHs is crucial for plant survival under stressful environments as they trigger signaling pathways. Hormonal cross regulation initiate a cascade of reactions which finely tune the physiological processes in plant architecture that help plant to grow under suboptimal growth conditions. Recently, various studies have highlighted the role of PHs such as abscisic acid, salicylic acid, ethylene, and jasmonates in the plant responses toward environmental stresses. The involvement of cytokinins, gibberellins, auxin, and relatively novel PHs such as strigolactones and brassinosteroids in plant growth and development has been documented under normal and stress conditions. The recent identification of the first plant melatonin receptor opened the door to this regulatory molecule being considered a new plant hormone. However, polyamines, which are not considered PHs, have been included in this chapter. Various microbes produce and secrete hormones which helped the plants in nutrient uptake such as N, P, and Fe. Exogenous use of such microbes help plants in correcting nutrient deficiency under abiotic stresses. This chapter focused on the recent developments in the knowledge related to PHs and their involvement in abiotic stresses of anticipation, signaling, cross-talk, and activation of response mechanisms. In view of role of hormones and capability of microbes in producing hormones, we propose the use of hormones and microbes as potential strategy for crop stress management.
In the present work, essential oils (EOs) extracted from different parts of sour orange Citrus aurantium (green leaves/twigs, small branches, wooden branches, and branch bark) were studied through gas chromatography coupled with mass spectrometry (GC/MS). Furthermore, the EOs in the amounts of 5, 10, 15, 20, and 25 µL were studied for their antibacterial activity against three pathogenic bacteria, Agrobacterium tumefaciens, Dickeya solani, and Erwinia amylovora. The main EO compounds in the leaves/twigs were 4-terpineol (22.59%), D-limonene (16.67%), 4-carvomenthenol (12.84%), and linalool (7.82%). In small green branches, they were D-limonene (71.57%), dodecane (4.80%), oleic acid (2.72%), and trans-palmitoleic acid (2.62%), while in branch bark were D-limonene (54.61%), γ-terpinene (6.68%), dodecane (5.73%), and dimethyl anthranilate (3.13%), and in branch wood were D-limonene (38.13%), dimethyl anthranilate (8.13%), (-)-β-fenchol (6.83%), and dodecane (5.31%). At 25 µL, the EO from branches showed the highest activity against A. tumefaciens (IZ value of 17.66 mm), and leaves/twigs EO against D. solani and E. amylovora had an IZ value of 17.33 mm. It could be concluded for the first time that the wood and branch bark of C. aurantium are a source of phytochemicals, with D-limonene being the predominant compound in the EO, with potential antibacterial activities. The compounds identified in all the studied parts might be appropriate for many applications, such as antimicrobial agents, cosmetics, and pharmaceuticals.
Increased problems associated with side effects and bacterial resistance of chemical drugs has prompted the research focus on herbal medicines in the past few decades. In the present investigation, the antimicrobial activity of the various parts of Avicennia marina (AM), a mangrove plant, has been evaluated. The plants were collected from the Jazan area of the Kingdom of Saudi Arabia. Primary extracts of roots, stem, leaves, fruits, and seeds were made in ethanol and fractioned in ethanol, ethyl acetate, petroleum ether, chloroform, and water. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts were determined against Bacillussubtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. It has been observed that the chloroform extract of roots of the AM exhibited inhibitory effects against both S. aureus (MIC = 1.5 ± 0.03 mg/mL) and E. coli (MIC = 1.7 ± 0.01 mg/mL). The ethanolic extract of the AM roots has shown antibacterial activity against Pseudomonas aeruginosa (MIC = 10.8 ± 0.78 mg/mL), Bacillussubtilis (MIC = 6.1 ± 0.27 mg/mL), Staphylococcus aureus (MIC = 2.3 ± 0.08 mg/mL), and Escherichia coli (MIC = 6.3 ± 0.28 mg/mL). The leaf extract of the AM in ethyl acetate showed antibacterial activity against S. aureus and E. coli. Antifungal activity of these extracts was also investigated against Aspergillus fumigatus and Candida albicans. Ethanolic extract of roots and seeds of the AM has shown antifungal activity against Aspergillus fumigatus when applied individually. Ethanolic extract of the AM fruits has shown an inhibitory effect on the growth of Aspergillus fumigatus and Candida albicans. It is suggested that the plant extracts of AM have tremendous antimicrobial activity against a group of microbes, and this effect depends on both the plant part and the solvent used for extraction. Therefore, this plant can be considered to treat various diseases caused by antibiotic-resistant bacteria.
Salinity stress is one of the major global problems that negatively affect crop growth and productivity. Therefore, ecofriendly and sustainable strategies for mitigating salinity stress in agricultural production and global food security are highly demandable. Sugarcane press mud (PM) is an excellent source of the organic amendment, and the role of PM in mitigating salinity stress is not well understood. Therefore, this study was aimed to investigate how the PM mitigates salinity stress through the regulation of rice growth, yield, physiological properties, and antioxidant enzyme activities in fine rice grown under different salinity stress conditions. In this study, different levels of salinity (6 and 12 dS m–1) with or without different levels of 3, 6, and 9% of SPM, respectively were tested. Salinity stress significantly increased malondialdehyde (MDA, 38%), hydrogen peroxide (H2O2, 74.39%), Na+ (61.5%), electrolyte leakage (40.32%), decreased chlorophyll content (32.64%), leaf water content (107.77%), total soluble protein (TSP, 72.28%), and free amino acids (FAA, 75.27%). However, these negative effects of salinity stress were reversed mainly in rice plants after PM application. PM application (9%) remained the most effective and significantly increased growth, yield, TSP, FAA, accumulation of soluble sugars, proline, K+, and activity of antioxidant enzymes, namely, ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD). Thus, these findings suggest a PM-mediated eco-friendly strategy for salinity alleviation in agricultural soil could be useful for plant growth and productivity in saline soils.
Different soil amendments are applied to improve soil properties and to achieve higher crop yield under drought conditions. The objective of the study was to investigate the role of biochar for the improvement of wheat (Triticum aestivum L.) growth and soil biochemical properties under drought conditions. A pot experiment with a completely randomized design was arranged with four replications in a wire house. Drought was imposed on two critical growth stages (tillering and grain filling) and biochar was applied to the soil 10 days before sowing at two different rates (28 g kg−1 and 38 g kg−1). Soil samples were collected to determine the soil properties including soil respiration and enzymatic parameters after crop harvesting. Results showed that water stress negatively affects all biochemical properties of the soil, while biochar amendments positively improved these properties. Application of biochar at 38 g kg−1 provided significantly higher mineral nutrients, Bray P (18.72%), exchangeable-K (7.44%), soil carbon (11.86%), nitrogen mineralization (16.35%), and soil respiration (6.37%) as a result of increased microbial activities in comparison with the 28 g kg−1 rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.