Abstract. A pelagic food web model was formulated with the goal of developing a quantitative understanding of the relationship between total production, export production, and environmental variables in marine ecosystems. The model assumes that primary production is partitioned through both large and small phytoplankton and that the food web adjusts to changes in the rate of allochthonous nutrient inputs in a way that maximizes stability, i.e., the ability of the system to return to steady state following a perturbation. The results of the modeling exercise indicate that ef ratios, defined as new production/total production = export production/total production, are relatively insensitive to total production rates at temperatures greater than -25øC and lie in the range 0.1-0.2. At moderate to high total production rates, ef ratios are insensitive to total production and negatively correlated with temperature. The maximum ef ratios are -0.67 at high rates of production and temperatures of 0 ø-10øC. At temperatures less than -20øC, there is a transition from low ef ratios to relatively high ef ratios as total production increases from low to moderate values. This transition accounts for the hyperbolic relationship often presumed to exist between ef ratios and total production. At low rates of production the model predicts a negative correlation between production and ef ratios, a result consistent with data collected at station ALOHA (22ø45'N, 158øW) in the North Pacific subtropical gyre. The predictions of the model are in excellent agreement with results reported from the Joint Global Ocean Flux Study (JGOFS) and from other field work. In these studies, there is virtually no correlation between total production and ef ratios, but temperature alone accounts for 86% of the variance in the ef ratios. Model predictions of the absolute and relative abundance of autotrophic and heterotrophic
Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.
The Southern Ocean exerts a strong impact on marine biogeochemical cycles and global air‐sea CO2 fluxes. Over the coming century, large increases in surface ocean CO2 levels, combined with increased upper water column temperatures and stratification, are expected to diminish Southern Ocean CO2 uptake. These effects could be significantly modulated by concomitant CO2‐dependent changes in the region's biological carbon pump. Here we show that CO2 concentrations affect the physiology, growth and species composition of phytoplankton assemblages in the Ross Sea, Antarctica. Field results from in situ sampling and ship‐board incubation experiments demonstrate that inorganic carbon uptake, steady‐state productivity and diatom species composition are sensitive to CO2 concentrations ranging from 100 to 800 ppm. Elevated CO2 led to a measurable increase in phytoplankton productivity, promoting the growth of larger chain‐forming diatoms. Our results suggest that CO2 concentrations can influence biological carbon cycling in the Southern Ocean, thereby creating potential climate feedbacks.
Measurements of chlorophyll, particulate carbon, and biogenic silica concentrations near a receding ice edge off the coast of Victoria Land, Antarctica, indicated the presence of a dense phytoplankton bloom. The bloom extended 250 kilometers from the ice edge and was restricted to waters where the melting of ice had resulted in reduced salinity. The region involved was one of enhanced vertical stability, which may have favored phytoplankton growth, accumulation, or both. Epontic algae released from melting ice may have served as an inoculum for the bloom. Ratios of organic carbon to chlorophyll and biogenic silica to carbon were unusually high, resulting in high biogenic silica concentrations despite only moderately high chlorophyll levels.
The Ross Sea polynya is among the most productive regions in the Southern Ocean and may constitute a significant oceanic CO2 sink. Based on results from several field studies, this region has been considered seasonally iron limited, whereby a “winter reserve” of dissolved iron (dFe) is progressively depleted during the growing season to low concentrations (∼0.1 nM) that limit phytoplankton growth in the austral summer (December–February). Here we report new iron data for the Ross Sea polynya during austral summer 2005–2006 (27 December–22 January) and the following austral spring 2006 (16 November–3 December). The summer 2005–2006 data show generally low dFe concentrations in polynya surface waters (0.10 ± 0.05 nM in upper 40 m, n = 175), consistent with previous observations. Surprisingly, our spring 2006 data reveal similar low surface dFe concentrations in the polynya (0.06 ± 0.04 nM in upper 40 m, n = 69), in association with relatively high rates of primary production (∼170–260 mmol C m−2 d−1). These results indicate that the winter reserve dFe may be consumed relatively early in the growing season, such that polynya surface waters can become “iron limited” as early as November; i.e., the seasonal depletion of dFe is not necessarily gradual. Satellite observations reveal significant biomass accumulation in the polynya during summer 2006–2007, implying significant sources of “new” dFe to surface waters during this period. Possible sources of this new dFe include episodic vertical exchange, lateral advection, aerosol input, and reductive dissolution of particulate iron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.