Background: Spodoptera litura larvae are polyphagous insects that have become a significant pest in recent years. The spread of this pest has led to the continuous usage of insecticides on crops. Some plant extracts have been used as a mixture to control insect pests and improve productivity. Methods: A plant-based mixture was mixed at a ratio of 1:1 v/v to demonstrate the effect on contact toxicity, feeding (no-choice test), and enzyme activities on S. litura. The active compounds of P. retrofractum and A. calamus were isolated by preparative thin-layer chromatography (PTLC). Results: Our results showed that binary mixtures from P. retrofractum and A. calamus exhibit the highest contact toxicity and antifeedant activity at a 1:1 ratio of LD 30 :LD 10 dose (3.213 µg/larva P. retrofractum + 3.294 µg/larva A. calamus). The main active ingredient from each crude extract was (2E,4E,14Z)-N-isobutylicosa-2,4,14-trienamide from P. retrofractum, and beta-asarone and alpha-asarone from A. calamus. Additionally, A. calamus seems to be the synergistic compound. Some compound mixtures increased the glutathione-S-transferase activities in vivo; whereas, almost no significant differences in esterase activities were noted. Conclusion: The results indicated that the ethanolic crude extracts of P. retrofractum and A. calamus mixtures could be used as the pesticidal compound and to develop a binary mixture formulation for controlling lepidopteran pests. However, the toxicity of this mixture to mammals needed to be explored before commercial development.
Essential oils are well known to act as biopesticides. This research evaluated the acute toxicity and synergistic effect of essential oil compounds in combination with cypermethrin against Spodoptera litura Fabricius (Lepidoptera: Noctuidae). The effects of distillation extracts of essential oils from Alpinia galanga Zingiberaceae (Zingiberales) rhizomes and Ocimum basilicum Lamiaceae (Lamiales) leaves; one of their primary essential oil compounds 1,8-cineole; and linalool were studied on second-instar S. litura by topical application under laboratory conditions. The results showed that A. galanga had the highest control efficiency, whereas1,8-cineole provided a moderate efficacy. The mixtures of linalool, 1,8-cineole, O. basilicum, or A. galanga with cypermethrin were synergistic on mortality. Activity measurements of the main detoxification enzymes show that linalool and 1,8-cineole inhibit the activity of cytochromes P450 and carboxylesterases, which could explain their synergistic effect. Based on our results, the use of these mixtures represents an ideal eco-friendly approach, helping to manage cypermethrin resistance of S. litura.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.