SUMMARY
The increasing throughput and sharing of proteomics mass spectrometry data have now yielded over one-third of a million public mass spectrometry runs. However, these discoveries are not continuously aggregated in an open and error-controlled manner, which limits their utility. To facilitate the reusability of these data, we built the MassIVE Knowledge Base (MassIVE-KB), a community-wide, continuously updating knowledge base that aggregates proteomics mass spectrometry discoveries into an open reusable format with full provenance information for community scrutiny. Reusing >31 TB of public human data stored in a mass spectrometry interactive virtual environment (MassIVE), the MassIVE-KB contains >2.1 million precursors from 19,610 proteins (48% larger than before; 97% of the total) and doubles proteome coverage to 6 million amino acids (54% of the proteome) with strict library-scale false discovery controls, thereby providing evidence for 430 proteins for which sufficient protein-level evidence was previously missing. Furthermore, MassIVE-KB can inform experimental design, helps identify and quantify new data, and provides tools for community construction of specialized spectral libraries.
A small silicon mode (de)multiplexer with cascaded asymmetrical directional couplers is demonstrated experimentally. As an example, a four channel mode (de)multiplexer is designed and realized for TM polarization. The fabricated mode (de)multiplexer has a low excess loss (<1 dB) as well as low crosstalk (≤23 dB) over a broad wavelength range (~20 nm). More channels can be achieved with two sets of orthogonal-polarization modes (e.g., 2N=8) multiplexed when desired.
Polyamines are essential for cell migration during early mucosal restitution after wounding in the gastrointestinal tract. Activity of voltage-gated K(+) channels (Kv) controls membrane potential (E(m)) that regulates cytoplasmic free Ca(2+) concentration ([Ca(2+)](cyt)) by governing the driving force for Ca(2+) influx. This study determined whether polyamines are required for the stimulation of cell migration by altering K(+) channel gene expression, E(m), and [Ca(2+)](cyt) in intestinal epithelial cells (IEC-6). The specific inhibitor of polyamine synthesis, alpha-difluoromethylornithine (DFMO, 5 mM), depleted cellular polyamines (putrescine, spermidine, and spermine), selectively inhibited Kv1.1 channel (a delayed-rectifier Kv channel) expression, and resulted in membrane depolarization. Because IEC-6 cells did not express voltage-gated Ca(2+) channels, the depolarized E(m) in DFMO-treated cells decreased [Ca(2+)](cyt) as a result of reduced driving force for Ca(2+) influx through capacitative Ca(2+) entry. Migration was reduced by 80% in the polyamine-deficient cells. Exogenous spermidine not only reversed the effects of DFMO on Kv1.1 channel expression, E(m), and [Ca(2+)](cyt) but also restored cell migration to normal. Removal of extracellular Ca(2+) or blockade of Kv channels (by 4-aminopyridine, 1-5 mM) significantly inhibited normal cell migration and prevented the restoration of cell migration by exogenous spermidine in polyamine-deficient cells. These results suggest that polyamine-dependent intestinal epithelial cell migration may be due partially to an increase of Kv1.1 channel expression. The subsequent membrane hyperpolarization raises [Ca(2+)](cyt) by increasing the driving force (the electrochemical gradient) for Ca(2+) influx and thus stimulates cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.