Aboveground biomass (AGB) models based on field-measured and remote-sensed data can help to understand and monitor ecosystems and evaluate the impacts of human activity. To create improved forest AGB models for use in an ecological rehabilitation area of Huainan, China, a suite of methods was used to evaluate a combination of the Chinese GaoFen-3 (GF-3) satellite’s synthetic aperture radar (SAR) data and vegetation indexes derived from the WorldView-3 satellite. Using vegetation indices and radar backscatter coefficients, a total of six modelling methods were applied to generate three AGB models, which included multivariable linear regression, linear, exponential, power, logarithmic, and growth functions. The results indicate that the observed root mean square errors (RMSE) of the best models, which included exponential functions based on the variables NDVI and HV, as well as their combination in a multivariable linear regression, were 43.74 Mg/ha, 30.87 Mg/ha, and 26.72 Mg/ha, respectively. The best model used multivariable linear regression with combined SAR and NDVI data (R2 = 0.861). The RMSEs were lowest for mixed forest, moderate for coniferous forest, and highest for broad-leaved forest. The results indicate that a combination of optical and microwave remote-sensing images can be used to effectively improve AGB estimation accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.