The influence of atmospheric turbulence on the coherence of a dual-frequency laser beam is studied experimentally. An atmospheric turbulence simulator is inserted in one arm of a Mach-Zehnder interferometer. A single frequency laser beam and a dual-frequency laser beam with a frequency difference of 100 MHz travel through the interferometer, respectively. The visibilities of the interference fringes of the single and dual-frequency laser beams under different turbulent forces are compared. When the turbulence becomes stronger, the visibilities of the interference pattern of the single frequency interferometer decrease more rapidly. This shows that the atmospheric turbulence has less influence on the coherence of the dual-frequency laser beam. The linewidths broadened by the turbulence are calculated with the Wiener-Khintchine theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.