After the earthquake, it is important to ensure the emergency supplies are provided in time. However, not only the timeliness, but also the fairness from different perspectives should be considered. Therefore, we use a multilevel location-routing problem (LPR) to study the fairness of distribution for emergency supplies after earthquake. By comprehensively considering the time window constraints, the partial road damage and dynamic recovery in emergency logistics network, the stochastic driving time of the vehicle, and the mixed load of a variety of emergency materials, we have developed a multiobjective model for the LRP in postearthquake multimodal and fair delivery of multivariety emergency supplies with a limited period. The goal of this model is to minimize the total time in delivering emergency supplies and to minimize the maximum waiting time for emergency supplies to reach demand points. A hybrid heuristic algorithm is designed to solve the model. The example shows that this algorithm has a high efficiency and can effectively realize the supply of emergency supplies after the earthquake within the specified period. This method might be particularly suitable for the emergency rescue scenarios where the victims of the earthquake are vulnerable to mood swings and the emergency supplies need to be fairly distributed.
For the past few years, disasters like earthquakes, landslides, mudslides, tsunamis, and traffic accidents have occurred with an ever-growing frequency, coverage, and intensity greatly beyond the expectation of the public. In order to respond effectively to disasters and to reduce casualties and property damage, countries around the world have invested more efforts in the theoretical study of emergency medicine and the construction of emergency medical rescue forces. Consequently, emergency medical rescue teams of all scales and types have come into being and have played significant roles in disaster response work. As the only state-level emergency medical rescue force from the Chinese People's Armed Police Forces, the force described here has developed, through continuous learning and practice, a characteristic mode in terms of grouping methods, equipment system construction, and training.
An earthquake is a very common natural disaster. Numerous studies have focused on the acute phase, but studies concerning the subacute phase after an earthquake were very limited. This aroused more attention being paid to medical relief in the subacute phase, and this study elaborated on the division of the medical relief period and the definition of medical relief targets. More importantly, major types of disease were analyzed by reviewing the relevant published studies, which were identified by searching electronic databases. Findings suggested that the clear division of medical relief stage is vital for determining the priority of medical aid and allocating medical resources scientifically, and all concerned populations should be targeted for medical assistance. The focus of acute phase is injury (64.2%), and the subacute phase is disease (27.8% respiratory disease, 22.9% common disease, 12.5% wound/injury, 10.5% skin disease, 8.7% gynecological and pediatric disease, 8.5% digestive disease). However, due to the limited available studies, the included articles perhaps did not reflect the actual proportion of each type of disease. More studies are needed to better understand the proportion of different diseases in each phase of an earthquake.
Background and Objectives: Coal mine injuries commonly occur, affecting both the safety and health of miners, and the normal operation of the coal mine. Accordingly, this study aimed to explore the regularity of injury and injury-related risk factors in coal mines in China so as to establish a scientific basis for reducing the incidence and promoting the prevention and control of injuries. Methods: A meta-analysis of casualty cases and injury-related risk factors from 1956 to 2017 in China was conducted utilizing data from six databases, including CNKI, Web of Science, PubMed, Medline, Embase, and Wanfang data. Summary estimates were obtained using random effects models. Results: There were statistically significant variations in coal mine accident types, types of work, injury sites, age, experience, months, and shifts (p < 0.001). Eight types of accidents were susceptible to the risk of injury, and the greatest risk was presented by roof-related accidents (odds ratio (OR) = 0.46, 95% confidence interval (CI) = 0.32–0.6). Coal miners and drillers were at a greater risk of injury (OR = 0.39, 95% CI = 0.35–0.44; OR = 0.22, 95% CI = 0.17–0.26, respectively). The extremities and the soft tissues of the skin were at the greatest risk of injury (OR = 0.44, 95% CI = 0.3–0.58; OR = 0.23, 95% CI = 0.1–0.48, respectively). Compared with other ages, miners aged 21–30 were at a greater risk of injury (21–30 years, OR = 0.45, 95% CI = 0.42–0.47; 31–40 years, OR = 0.29, 95% CI = 0.25–0.32; <20 years, OR = 0.13, 95% CI = 0.03–0.23; >40 years, OR = 0.17, 95% CI = 0.09–0.25). Compared with other miners, those with 6–10 years of experience were at a greater risk of injury (6–10 years, OR = 0.29, 95% CI = 0.25–0.32; 2–5 years, OR = 0.33, 95% CI = 0.25–0.41; <1 year, OR = 0.22, 95% CI = 0.08–0.33; >11 years, OR = 0.22, 95% CI = 0.17–0.27). During the months of July to September, the risk of injury was elevated (7–9th months, OR = 0.32, 95% CI = 0.25–0.39; 10–12th months, OR = 0.24, 95% CI = 0.16–0.31; 1st–3rd months, OR = 0.22, 95% CI = 0.16–0.28; 4–6th months, OR = 0.21, 95% CI = 0.16–0.27). In the three-shift work system, the risk of injury was higher during night shifts (22:00–06:00, OR = 0.43, 95% CI = 0.3–0.56; 14:00–22:00, OR = 0.3, 95% CI = 0.23–0.27; 06:00–14:00, OR = 0.27, 95% CI = 0.18–0.35). Conclusions: The results of this research study reveal that coal mine injuries are prevalent among coal miners. These injuries are often related to the age, experience, months of work, and the three-shift work system of miners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.