The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions. (2), and 90% of its genome was estimated to be repetitive DNA (3). The Ae. tauschii genome and the D genome of hexaploid wheat are closely related due to the recent origin of hexaploid wheat (4). Ae. tauschii is therefore an important resource for wheat breeding, and its genome is an invaluable reference for wheat genomics, as illustrated by the utility of its sequences in the analysis of the wheat gene space (5). The utility of Ae. tauschii for wheat genetics and genomics would be further enhanced by a high-quality draft sequence of its genome. With current technology, the only approach to produce a high-quality de novo draft sequence for a genome of this size and complexity is the orderedclone sequencing approach, which requires a physical map.Physical map construction necessitates fingerprinting multiple genome equivalents of bacterial artificial chromosome (BAC) clones, assembling them into contigs, and anchoring the contigs on a genetic map (6-8). Great strides have been made in BAC fingerprinting techniques (7, 9-12) and software for fingerprint editing and contig assembly (13-16). It is now possible with these technological advances to fingerprint and assemble contigs from hundreds of thousands of BAC clones (7,8,(17)(18)(19). In contrast, contig anchoring remains a weakness in physical mapping of large plant genomes because of their low gene density, extensive gene duplication, and abundance of repetitive DNA. BAC end sequences (BESs) are an effective means of contig anchoring in small genomes (11). In large genomes, however, hundreds of thousands of BESs are needed. DNA hybridization and PCRbased anchoring (6,7,20,21)...
SummaryWe investigated the composition and the basis of genome expansion in the core Triticeae genome using Aegilops tauschii, the D-genome donor of bread wheat. We sequenced an unfiltered genomic shotgun (trs) and a methylation-filtration (tmf) library of A. tauschii, and analyzed wheat expressed sequence tags (ESTs) to estimate the expression of genes and transposable elements (TEs). The sampled D-genome sequences consisted of 91.6% repetitive elements, 2.5% known genes, and 5.9% low-copy sequences of unknown function. TEs constituted 68.2% of the D-genome compared with 50% in maize and 14% in rice. The DNA transposons constituted 13% of the D-genome compared with 2% in maize. TEs were methylated unevenly within and among elements and families, and most were transcribed which contributed to genome expansion in the core Triticeae genome. The copy number of a majority of repeat families increased gradually following polyploidization. Certain TE families occupied discrete chromosome territories. Nested insertions and illegitimate recombination occurred extensively between the TE families, and a majority of the TEs contained internal deletions. The GC content varied significantly among the three sequence sets examined ranging from 42% in tmf to 46% in trs and 52% in the EST. Based on enrichment of genic sequences, methylation-filtration offers one option, although not as efficient as in maize, for isolating gene-rich regions from the large genome of wheat.
Expressed sequence tags (ESTs) are a valuable source of molecular markers. To enhance the resolution of an existing linkage map and to identify putative functional polymorphic gene loci in hexaploid wheat (Triticum aestivum L.), over 260,000 ESTs from 5 different grass species were analyzed and 5418 SSR-containing sequences were identified. Using sequence similarity analysis, 156 cross-species superclusters and 138 singletons were used to develop primer pairs, which were then tested on the genomic DNA of barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and wheat. Three-hundred sixty-eight primer pairs produced PCR amplicons from at least one species and 227 primer pairs amplified DNA from two or more species. EST-SSR sequences containing dinucleotide motifs were significantly more polymorphic (74%) than those containing trinucleotides (56%), and polymorphism was similar for markers in both coding and 5' untranslated (UTR) regions. Out of 112 EST-SSR markers, 90 identified 149 loci that were integrated into a reference wheat genetic map. These loci were distributed on 19 of the 21 wheat chromosomes and were clustered in the distal chromosomal regions. Multiple-loci were detected by 39% of the primer pairs. Of the 90 mapped ESTs, putative functions for 22 were identified using BLASTX queries. In addition, 80 EST-SSR markers (104 loci) were located to chromosomes using nullisomic-tetrasomic lines. The enhanced map from this study provides a basis for comparative mapping using orthologous and PCR-based markers and for identification of expressed genes possibly affecting important traits in wheat.
SummaryPolyploid wheats comprise four species: Triticum turgidum (AABB genomes) and T. aestivum (AABBDD) in the Emmer lineage, and T. timopheevii (AAGG) and T. zhukovskyi (AAGGA m A m ) in the Timopheevi lineage. Genetic relationships between chloroplast genomes were studied to trace the evolutionary history of the species. Twenty-five chloroplast genomes were sequenced, and 1127 plant accessions were genotyped, representing 13 Triticum and Aegilops species.The A. speltoides (SS genome) diverged before the divergence of T. urartu (AA), A. tauschii (DD) and the Aegilops species of the Sitopsis section. Aegilops speltoides forms a monophyletic clade with the polyploid Emmer and Timopheevi wheats, which originated within the last 0.7 and 0.4 Myr, respectively. The geographic distribution of chloroplast haplotypes of the wild tetraploid wheats and A. speltoides illustrates the possible geographic origin of the Emmer lineage in the southern Levant and the Timopheevi lineage in northern Iraq.Aegilops speltoides is the closest relative of the diploid donor of the chloroplast (cytoplasm), as well as the B and G genomes to Timopheevi and Emmer lineages. Chloroplast haplotypes were often shared by species or subspecies within major lineages and between the lineages, indicating the contribution of introgression to the evolution and domestication of polyploid wheats.
Fluorescence in situ hybridization (FISH) has been widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts making them amenable for FISH mapping. We used BAC-FISH to study genome organization and evolution in hexaploid wheat and its relatives. We selected 56 restriction fragment length polymorphism (RFLP) locus-specific BAC clones from libraries of Aegilops tauschii (the D-genome donor of hexaploid wheat) and A-genome diploid Triticum monococcum. Different types of repetitive sequences were identified using BAC-FISH. Two BAC clones gave FISH patterns similar to the repetitive DNA family pSc119; one BAC clone gave a FISH pattern similar to the repetitive DNA family pAs1. In addition, we identified several novel classes of repetitive sequences: one BAC clone hybridized to the centromeric regions of wheat and other cereal species, except rice; one BAC clone hybridized to all subtelomeric chromosome regions in wheat, rye, barley and oat; one BAC clone contained a localized tandem repeat and hybridized to five D-genome chromosome pairs in wheat; and four BAC clones hybridized only to a proximal region in the long arm of chromosome 4A of hexaploid wheat. These repeats are valuable markers for defined chromosome regions and can also be used for chromosome identification. Sequencing results revealed that all these repeats are transposable elements (TEs), indicating the important role of TEs, especially retrotransposons, in genome evolution of wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.