Liposomes can be designed to release an entrapped drug preferentially at temperatures attainable by mild local hyperthermia. In a test system in vitro, protein synthesis by Escherichia coli is inhibited and killing of the cells is enhanced by heating neomycin-containing liposomes to their phase transition temperature to maximize drug release. In the presence of serum the ratio of release at 44 degrees C to that at 37 degrees C can be made greater than 100:1, suggesting possible applications in the treatment of tumors or local infection.
Hyperthermic sensitivities of Escherichia coli B/r and Bs-1 were determined for lag-, midlog-, and stationary-phase cells at 47, 48, and 49 degrees C. In both strains midlog-phase cells were strikingly more heat sensitive (100-fold greater killing after 4 h at 48 degrees C) than stationary-phase cells, with intermediate sensitivity for lag-phase cells. In contrast to the reported difference in the radiation sensitivity between these two strains, very little difference in heat sensitivity was seen. Patterns of fatty acid composition of both strains were very similar at each phase of growth. From midlog to stationary phase, 16:1 and 18:1 unsaturated fatty acids decrease from 16 and 30% to 0.5 and 3%, respectively, while the C17 and C19 cyclopropane fatty acids increase from 7 and 3% to 22 and 25%, respectively. Concomitant with these changes in fatty acid composition, substantially higher membrane microviscosity values were recorded for stationary-phase cells. Total membrane microviscosity was positively associated with the C17 and C19 cyclopropane fatty acid composition and with cell survival following hyperthermia. In contrast to hyperthermic sensitivity, radiation survival differences between B/r and Bs-1 are little affected by growth stage. We propose that these results are consistent with a critical influence of membrane lipids on cellular hyperthermic sensitivity and further that the target sites for radiation and hyperthermia are different in these cells.
We have demonstrated a positive correlation between membrane microviscosity and the temperature required to kill E. coli. Batches of cells with differing unsaturated fatty acid (u.f.a.) compositions were prepared from the u.f.a.-requiring E. coli K12 mutant K1060. The membrane microviscosity of these cells is estimated from the extent of fluorescence polarization of the probe molecule 1,6-diphenyl-1,3-5,-hexatriene dissolved in the membrane. For the same growth temperature, cells grown in oleic acid (18:1) have a greater microviscosity and u.f.a. content than linolenic acid (18:3) grown cells. the rate of decrease in microviscosity with increasing temperature is correlated with the amount of u.f.a. present in the membrane. From survival curves determined at several hyperthermic exposures, one can interpolate the hyperthermic temperature required to kill 90 per cent of the cells in three hours. These equivalent kill temperatures are directly related to the cell microviscosity. These data support the hypothesis that cell membrane microviscosity plays a critical role in hyperthermic killing.
The freezing point depression of freshly excised frozen tissues, pulverized in a hydraulic press or in a mortar, is greater than that of plasma. Even at 0°C. the freezing point depression of such homogenates increases significantly with time. Dilution data indicate that such freezing point data are valid. The presence of intact cells has been shown in smears of tissues pulverized in a mortar, but not in smears of those crushed in a hydraulic press. The osmolarity of various diluent solutions affects the calculated osmotic activity of tissue homogenates presumably because of delayed diffusion between the diluent and cell fluid. With a hypertonic NaCl diluent, spuriously low values of tissue osmotic activity are found from calculations assuming instantaneous mixing between homogenates and diluents. The limitations of data from cryoscopic experiments and from tissue-swelling experiments are discussed in relation to the basic question of whether or not cell fluid is isotonic to extracellular fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.