The proliferation of ransomware has become a significant threat to cybersecurity in recent years, causing significant financial, reputational, and operational damage to individuals and organizations. This paper aims to provide a comprehensive overview of the evolution of ransomware, its taxonomy, and its state-of-the-art research contributions. We begin by tracing the origins of ransomware and its evolution over time, highlighting the key milestones and major trends. Next, we propose a taxonomy of ransomware that categorizes different types of ransomware based on their characteristics and behavior. Subsequently, we review the existing research over several years in regard to detection, prevention, mitigation, and prediction techniques. Our extensive analysis, based on more than 150 references, has revealed that significant research, specifically 72.8%, has focused on detecting ransomware. However, a lack of emphasis has been placed on predicting ransomware. Additionally, of the studies focused on ransomware detection, a significant portion, 70%, have utilized machine learning methods. We further discuss the challenges found such as the ones related to obtaining ransomware datasets. In addition, our study uncovers a range of shortcomings in research pertaining to real-time protection and identifying zero-day ransomware. Adversarial machine learning exploitation has been identified as an under-researched area in the field. This survey is a constructive roadmap for researchers interested in ransomware research matters.
The Internet of Things (IoT) has the potential to revolutionize agriculture by providing real-time data on crop and livestock conditions. This study aims to evaluate the performance scalability of wireless sensor networks (WSNs) in agriculture, specifically in two scenarios: monitoring olive tree farms and stables for horse training. The study proposes a new classification approach of IoT in agriculture based on several factors and introduces performance assessment metrics for stationary and mobile scenarios in 6LowPAN networks. The study utilizes COOJA, a realistic WSN simulator, to model and simulate the performance of the 6LowPAN and Routing protocol for low-power and lossy networks (RPL) in the two farming scenarios. The simulation settings for both fixed and mobile nodes are shared, with the main difference being node mobility. The study characterizes different aspects of the performance requirements in the two farming scenarios by comparing the average power consumption, radio duty cycle, and sensor network graph connectivity degrees. A new approach is proposed to model and simulate moving animals within the COOJA simulator, adopting the random waypoint model (RWP) to represent horse movements. The results show the advantages of using the RPL protocol for routing in mobile and fixed sensor networks, which supports dynamic topologies and improves the overall network performance. The proposed framework is experimentally validated and tested through simulation, demonstrating the suitability of the proposed framework for both fixed and mobile scenarios, providing efficient communication performance and low latency. The results have several practical implications for precision agriculture by providing an efficient monitoring and management solution for agricultural and livestock farms. Overall, this study provides a comprehensive evaluation of the performance scalability of WSNs in the agriculture sector, offering a new classification approach and performance assessment metrics for stationary and mobile scenarios in 6LowPAN networks. The results demonstrate the suitability of the proposed framework for precision agriculture, providing efficient communication performance and low latency.
The brain tumor is the 22nd most common cancer worldwide, with 1.8% of new cancers. It is likely the most severe ailment that necessitates early discovery and treatment, and it requires the competence of neurosubject-matter experts and radiologists. Because of their enormous increases in data search and extraction speed and accuracy, as well as individualized treatment suggestions, machine and deep learning techniques are being increasingly commonly applied throughout healthcare industries. The current study depicts the methodologies and procedures used to detect a tumor inside the brain utilizing machine and deep learning techniques. Initially, data were preprocessed using contrast limited adaptive histogram equalization. Then, features were extracted using principal component analysis and independent component analysis (ICA). Next, the image was smoothed using multiple optimization techniques such as firefly and cuckoo search, lion, and bat optimization. Finally, Naïve Bayes and recurrent neural networks were utilized to classify the improved results. According to the findings, the ICA with cuckoo search and Naïve Bayes has the best mean square error rate of 1.02. With 64.81% peak signal-to-noise and 98.61% accuracy, ICA with hybrid optimization and a recurrent neural network (RNN) proved to better than the other algorithms. Furthermore, a Smartphone application is designed to perform quick and decisive actions. It helps neurologists and patients identify the tumor from a brain image in the early stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.