Nanomedicine, defined as the application of nanotechnology in the medical field, has the potential to significantly change the course of diagnostics and treatment of life-threatening diseases, such as cancer. In comparison with traditional cancer diagnostics and therapy, cancer nanomedicine provides sensitive cancer detection and/or enhances treatment efficacy with significantly minimized adverse effects associated with standard therapeutics. Cancer nanomedicine has been increasingly applied in areas including nanodrug delivery systems, nanopharmaceuticals, and nanoanalytical contrast reagents in laboratory and animal model research. In recent years, the successful introduction of several novel nanomedicine products into clinical trials and even onto the commercial market has shown successful outcomes of fundamental research into clinics. This paper is intended to examine several nanomedicines for cancer therapeutics and/or diagnostics-related applications, to analyze the trend of nanomedicine development, future opportunities, and challenges of this fast-growing area.
Solid-phase microextraction (SPME) fiber coatings based on conductive polypyrrole films were prepared for the electrochemical extraction and desorption of ionic analytes. Simple preparation of each of the PPY extraction coatings on a platinum wire was possible with a constant potential method, but more importantly, cycling of the film between oxidation and reduction potentials facilitated the extraction and desorption of ionic analytes. The analytes were desorbed into a sample aliquot of water and were determined by flow injection analysis using a mass spectrometer. The fiber coatings and the developed electrochemical SPME method were found to be stable and reproducible (RSD < 5%; N = 5) and could be extended to several cations and anions, confirming the versatility of the approach. Preconcentration of the analyte on the fiber was also possible by repeating the processes to increase the amount of analyte extracted.
A molecularly imprinted polymer (MIP) material was synthesized for use as an in-tube solid-phase microextraction (SPME) adsorbent. The inherent selectivity and chemical and physical robustness of the MIP material was demonstrated as an effective stationary-phase material for in-tube SPME. An automated and on-line MIP SPME extraction method was developed for propranolol determination in biological fluids. This simplified the sample preparation process and the chromatographic separation of several beta-blocker compounds. The method developed for propranolol showed improved selectivity in comparison to alternative in-tube stationary-phase materials, overcoming the limitations of existing SPME coating materials. Preconcentration of the sample by the MIP adsorbent increased the sensitivity, yielding a limit of detection of 0.32 microg/mL by UV detection. Excellent method reproducibility (RSD < 5.0%) and column reusability (> 500 injections) were observed over a fairly wide linear dynamic range (0.5-100 microg/mL) in serum samples. To our knowledge, this is the first report on the automated application of a MIP material for in-tube SPME. The method was inexpensive, simple to set up, and simplified the choice of SPME adsorbent for in-tube extraction. The approach can potentially be extended to other MIPs for the determination of a wide range of chemically significant analytes.
The technique of molecular imprinting is used to produce an extensively cross-linked poly(methacrylic acid-co-ethylene dimethacrylate) material that contains theophylline as a print molecule. After Soxhlet extraction of the theophylline, binding sites are formed in the polymer with complementary size, shape, and positioning of chemical functionalities. The molecularly imprinted polymer's (MIP) high theophylline selectivity, chemical stability, and physically robust nature make it an ideal stationary-phase material in columns for HPLC separation of theophylline from other structurally related drug compounds. Mobile-phase tests confirm that a retention mechanism typical of normal-phase chromatography governs the separation, and selectivity of the MIP column can be controlled by a combination of the mobile phase and the sample solvent. Under optimal conditions, the MIP column functions like a solid-phase sorbent for theophylline extraction. Rapid elution of the bound theophylline can be accomplished in a pulsed format through injection of 20 μL of a solvent that has the proper polarity and protic nature to disrupt the electrostatic interactions and hydrogen bonding between theophylline and binding sites. A concentration detection limit of 120 ng/mL is obtained using direct UV absorption detection at 270 nm, which corresponds to a mass detection limit of 2.4 ng. This new technique, molecularly imprinted solid-phase extraction with pulsed elution (MISPE-PE), permits on-line preconcentration of theophylline from a large volume of dilute sample solution. Using a sample volume of 300 μL, a 40 ng/mL standard solution produces a detectable peak signal. Application of MISPE-PE in serum analysis further demonstrates the high capability of the MIP column to selectively isolate theophylline from other matrix components for fast, accurate determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.