A novel covalent functionalization strategy was developed to prepare reproducible ZIF-90 molecular sieve membranes by using 3-aminopropyltriethoxysilane as a covalent linker between the ZIF-90 layer and Al(2)O(3) support via imines condensation. The ZIF-90 membranes show high thermal and hydrothermal stabilities, and they allow the separation of hydrogen from larger gases by molecular sieving.
BackgroundMicroRNAs (miRNAs) are important regulators that play key roles in tumorigenesis and tumor progression. A previous report has shown that let-7 family members can act as tumor suppressors in many cancers. Through miRNA array, we found that let-7f was downregulated in the highly metastatic potential gastric cancer cell lines GC9811-P and SGC7901-M, when compared with their parental cell lines, GC9811 and SGC7901-NM; however, the mechanism was not clear. In this study, we investigate whether let-7f acts as a tumor suppressor to inhibit invasion and metastasis in gastric cancers.Methodology/PrincipalReal-time PCR showed decreased levels of let-7f expression in metastatic gastric cancer tissues and cell lines that are potentially highly metastatic. Cell invasion and migration were significantly impaired in GC9811-P and SGC7901-M cell lines after transfection with let-7f-mimics. Nude mice with xenograft models of gastric cancer confirmed that let-7f could inhibit gastric cancer metastasis in vivo after transfection by the lentivirus pGCsil-GFP- let-7f. Luciferase reporter assays demonstrated that let-7f directly binds to the 3′UTR of MYH9, which codes for myosin IIA, and real-time PCR and Western blotting further indicated that let-7f downregulated the expression of myosin IIA at the mRNA and protein levels.Conclusions/SignificanceOur study demonstrated that overexpression of let-7f in gastric cancer could inhibit invasion and migration of gastric cancer cells through directly targeting the tumor metastasis-associated gene MYH9. These data suggest that let-7f may be a novel therapeutic candidate for gastric cancer, given its ability to reduce cell invasion and metastasis.
Two rhodamine-based chemosensors (1 and 2) were designed, and their sensing behavior toward metal ions was investigated by fluorescence spectroscopies. 1 and 2 achieved tuning the selectivity to Fe(III) and Cr(III) in 100% aqueous solution, whereas other ions including Cd(II), Co(II), Cu(II), Ni(II), Zn(II), Mg(II), Ba(II), Pb(II), Na(I), and K(I) induced basically no spectral change, which constituted a Fe(III)-selective and a Cr(III)-selective fluorescent chemosensor, respectively.
A new series of five three-dimensional Ln(III) metal-organic frameworks (MOFs) formulated as [Ln(μ-L)(μ-HCOO)(μ-OH)(μ-O)(DMF)(HO)] {Ln = Tb (1), Eu (2), Gd (3), Dy (4), and Er (5)} was successfully obtained via a solvothermal reaction between the corresponding lanthanide(III) nitrates and 2-(6-carboxypyridin-3-yl)terephthalic acid (HL). All of the obtained compounds were fully characterized, and their structures were established by single-crystal X-ray diffraction. All products are isostructural and possess porous 3D networks of the fluorite topological type, which are driven by the cubane-like [Ln(μ-OH)(μ-O)(μ-HCOO)] blocks and μ-L spacers. Luminescent and sensing properties of 1-5 were investigated in detail, revealing a unique capability of Tb-MOF (1) for sensing acetone and metal(III) cations (Fe or Ce) with high efficiency and selectivity. Apart from a facile recyclability after sensing experiments, the obtained Tb-MOF material features a remarkable stability in a diversity of environments such as common solvents, aqueous solutions of metal ions, and solutions with a broad pH range from 4 to 11. In addition, compound 1 represents a very rare example of the versatile Ln-MOF probe capable of sensing Ce or Fe cations or acetone molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.