Aiming at the problem that the robustness of gesture recognition is difficult to guarantee, this paper presents a method based on multi-features and sparse representation. Hu invariant moments and HOG features of training samples are extracted in training phase. The K-SVD algorithm is used to train the initial value of dictionary formed by two features so as to obtain two sub-dictionaries. In recognition phase, sparse coefficients of corresponding training dictionary are derived by solving minimum l 1-norm. Finally, the overall reconstruction error is calculated to judge the categories of test samples. In experimental simulation, five kinds of grasp gesture are collected to create gesture sample library. After selecting optimal HOG parameters and the weight of two features, the recognition effect of the method is analysed. Compared with the commonly used classification, the results show that the method has better recognition rate and robustness.
Aiming at the problem that the robustness of gesture recognition is difficult to guarantee, this paper presents a method based on multi-features and sparse representation. Hu invariant moments and HOG features of training samples are extracted in training phase. The K-SVD algorithm is used to train the initial value of dictionary formed by two features so as to obtain two sub-dictionaries. In recognition phase, sparse coefficients of corresponding training dictionary are derived by solving minimum l 1 -norm. Finally, the overall reconstruction error is calculated to judge the categories of test samples. In experimental simulation, five kinds of grasp gesture are collected to create gesture sample library. After selecting optimal HOG parameters and the weight of two features, the recognition effect of the method is analysed. Compared with the commonly used classification, the results show that the method has better recognition rate and robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.