Currently most attempts at cancer immunotherapy involve the generation of CD8+ cytotoxic T lymphocytes (CTLs) against tumor-associated antigens. Many tumors, however, have been immunoselected to evade recognition by CTLs and thus alternative approaches to cancer immunotherapy are urgently needed. Here we demonstrate that CD4+ T cells that recognize a secreted tumor-specific antigen and exhibit a cytokine secretion profile characteristic of Th2 cells, are capable of clearing established lung and visceral metastases of a CTL-resistant melanoma. Clearance of lung metastases by the Th2 cells was found to be totally dependent on the eosinophil chemokine, eotaxin, and partially dependent on the transcription activator signal transducer and activator of transcription 6 (STAT6), with degranulating eosinophils within the tumors inducing tumor regression. In contrast, tumor-specific CD4+ Th1 cells, that recruited macrophages into the tumors, had no effect on tumor growth. This work provides the basis for a new approach to adoptive T cell immunotherapy of cancer.
Rationale The effects of c-kitPOS cardiac progenitor cells (CPCs) (and adult cell therapy in general) on left ventricular (LV) function have been regarded as modest or inconsistent. Objective To determine whether three CPC infusions have greater efficacy than one infusion. Methods and Results Rats with a 30-day-old myocardial infarction received one or three CPC infusions into the LV cavity, 35 days apart. Compared with vehicle-treated rats, the single-dose group exhibited improved LV function after the 1st infusion (consisting of CPCs) but not after the 2nd and 3rd (vehicle). In contrast, in the multiple-dose group regional and global LV function improved by a similar degree after each CPC infusion, resulting in greater cumulative effects. For example, the total increase in LV ejection fraction was approximately triple in the multiple-dose group vs. the single-dose group (P<0.01). The multiple-dose group also exhibited more viable tissue and less scar, less collagen in the risk and noninfarcted regions, and greater myocyte density in the risk region. Conclusions This is the first demonstration that repeated CPC administrations are markedly more effective than a single administration. The concept that the full effects of CPCs require repeated doses has significant implications for both preclinical and clinical studies; it suggests that the benefits of cell therapy may be underestimated or even overlooked if they are measured after a single dose, and that repeated administrations are necessary to properly evaluate the effectiveness of a cell product. In addition, we describe a new method that enables studies of repeated cell administrations in rodents.
Genetic analyses have linked MicroRNA-137 ( MIR137 ) to neuropsychiatric disorders, including schizophrenia and autism spectrum disorder (ASD). MiR-137 plays important roles in neurogenesis and neuronal maturation, but the impact of miR-137 loss of function in vivo remains unclear. Here we show the complete loss of miR-137 in the mouse germline (gKO) or nervous system (cKO) leads to postnatal lethality, while heterozygous gKO and cKO mice remain viable. Partial loss of miR-137 in heterozygous cKO mice results in dysregulated synaptic plasticity, repetitive behavior, and impaired learning and social behavior. Transcriptomic and proteomic analyses revealed that the miR-137 mRNA target, Phosphodiesterase 10a (Pde10a), is elevated in heterozygous KO mice. Treatment with the PDE10A inhibitor papaverine or knockdown of Pde10a ameliorates the deficits observed in the heterozygous cKO mice. Collectively, our results suggest that MIR137 plays essential roles in postnatal neurodevelopment, and that dysregulation of miR-137 potentially contributes to neuropsychiatric disorders in humans.
Chromosome movements in mitosis are orchestrated by dynamic interactions between spindle microtubules and the kinetochore, a multiprotein complex assembled onto centromeric DNA of the chromosome. Here we show that phosphorylation of human HsMis13 by Aurora B kinase is required for functional kinetochore assembly in HeLa cells. Aurora B interacts with HsMis13 in vitro and in vivo. HsMis13 is a cognate substrate of Aurora B, and the phosphorylation sites were mapped to Ser-100 and Ser-109. Suppression of Aurora B kinase by either small interfering RNA or chemical inhibitors abrogates the localization of HsMis13 but not HsMis12 to the kinetochore. In addition, non-phosphorylatable but not wild type and phospho-mimicking HsMis13 failed to localize to the kinetochore, demonstrating the requirement of phosphorylation by Aurora B for the assembly of HsMis13 to kinetochore. In fact, localization of HsMis13 to the kinetochore is spatiotemporally regulated by Aurora B kinase, which is essential for recruiting outer kinetochore components such as Ndc80 components and CENP-E for functional kinetochore assembly. Importantly, phospho-mimicking mutant HsMis13 restores the assembly of CENP-E to the kinetochore, and tension developed across the sister kinetochores in Aurora B-inhibited cells. Thus, we reason that HsMis13 phosphorylation by Aurora B is required for organizing a stable bi-oriented microtubule kinetochore attachment that is essential for faithful chromosome segregation in mitosis.The kinetochore is a super-molecular complex assembled at each centromere in eukaryotes. It provides a chromosomal attachment point for the mitotic spindle, linking the chromosome to the microtubules and functions in initiating, controlling, and monitoring the movements of chromosomes during mitosis. The kinetochore of animal cells contains two functional domains; that is, the inner kinetochore, which is tightly and persistently associated with centromeric DNA sequences throughout the cell cycle and the outer kinetochore which is composed of many dynamic protein complexes that interact with microtubules only during mitosis. The stable propagation of eukaryotic cells requires each chromosome to be accurately duplicated and faithfully segregated. During mitosis, attaching, positioning, and bi-orientating kinetochores with the spindle microtubules play critical roles in chromosome segregation and genomic stability (see Refs. 1 and 2).Mitosis is orchestrated by signaling cascades that coordinate mitotic processes and ensure accurate chromosome segregation. The key switch for the onset of mitosis is the archetypal cyclin-dependent kinase Cdk1. In addition to the master mitotic kinase Cdk1, three other protein serine/threonine kinase families are also involved, including the Polo kinases, Aurora kinases, and the NEK 3 (NIMA-related kinases) (e.g. Refs. 3 and 4). Recent studies have demonstrated the involvement of NEK kinase in stabilization of the kinetochore-microtubule attachment (e.g. Ref. 5) and the critical role of Aurora B kinase in kineto...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.