Polymeric nanoreactors (NRs) have distinct advantages to improve chemical reaction efficiency, but the in vivo applications are limited by lack of tissue-specificity. Herein, novel glucose oxidase (GOD)-loaded therapeutic vesicular NRs (theraNR) are constructed based on a diblock copolymer containing poly(ethylene glycol) (PEG) and copolymerized phenylboronic ester or piperidine-functionalized methacrylate (P(PBEM-co-PEM)). Upon systemic injection, theraNR are inactive in normal tissues. At a tumor site, theraNR are specifically activated by the tumor acidity via improved permeability of the membranes. Hydrogen peroxide (H O ) production by the catalysis of GOD in theraNR increases tumor oxidative stress significantly. Meanwhile, high levels of H O induce self-destruction of theraNR releasing quinone methide (QM) to deplete glutathione and suppress the antioxidant ability of cancer cells. Finally, theraNR efficiently kill cancer cells and ablate tumors via the synergistic effect.
Abstract:To quantitatively access the effects of drought stress during different growth stages of soybean on development process and yield, a pot-culture experiment was conducted in China's Huaibei Plain with different irrigation treatments over two seasons (2015 and 2016). Two drought stress levels (mild and severe) were applied at four growth stages for the experiment (S: seedling stage; B: branching stage; FPS: flowering and pod-setting stage; and PF: pod-filling stage). The effects of drought stress at different stages on growth and yield were evaluated and compared. Results of this two-year study showed that all growth and yield parameters were significantly affected by the water deficit during the sensitive FPS. Compared to the full irrigation treatment, severe drought stress during FPS caused a 22% loss of final plant height, 61% loss of the leaf area per plant (LAP), and 67% loss of final aboveground dry matter (ADM). Yield components also declined dramatically with water deficits during FPS and PF. Significant seed yield losses of 73-82% per plant were observed in the plants exposed to drought stress during FPS, and were also associated with the highest nonviable pod percentage of 13%. The greatest losses in 100-seed weight (42-48%) were observed under drought stress during PF. A rising trend in response to increasing soil water deficit (SWD) was observed for LAP, yield, and ADM losses. The slope (k) values of these fitting curves varied at different treatments, the highest value of k (7.37 and 8.47 in two years, respectively) was also observed in the sensitive FPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.