Background and Purpose: Increasing evidence suggests systemic inflammationcaused skeletal muscle atrophy as a major clinical feature of cachexia. Triptolide obtained from Tripterygium wilfordii Hook F possesses potent anti-inflammatory and immunosuppressive effects. The present study aims to evaluate the protective effects and molecular mechanisms of triptolide on inflammation-induced skeletal muscle atrophy. Experimental Approach: The effects of triptolide on skeletal muscle atrophy were investigated in LPS-treated C2C12 myotubes and C57BL/6 mice. Protein expressions and mRNA levels were analysed by western blot and qPCR, respectively. Skeletal muscle mass, volume and strength were measured by histological analysis, micro-CT and grip strength, respectively. Locomotor activity was measured using the open field test. KEY RESULTS: Triptolide (10-100 fM) up-regulated protein synthesis signals (IGF-1/p-IGF-1R/IRS-1/p-Akt/p-mTOR) and down-regulated protein degradation signal atrogin-1 in C2C12 myotubes. In LPS (100 ngÁml À1 )-treated C2C12 myotubes, triptolide up-regulated MyHC, IGF-1, p-IGF-1R, IRS-1 and p-Akt. Triptolide also down-regulated ubiquitin-proteasome molecules (n-FoxO3a/atrogin-1/MuRF1), proteasome activity, autophagy-lysosomal molecules (LC3-II/LC3-I and Bnip3) and inflammatory mediators (NF-κB, Cox-2, NLRP3, IL-1β and TNF-α). However, AG1024, an IGF-1R inhibitor, suppressed triptolide-mediated effects on MyHC, myotube diameter, MuRF1 and p62 in LPS-treated C2C12 myotubes. In LPS (1 mgÁkg À1 , i.p.)-challenged mice, triptolide (5 and 20 μgÁkg À1 Áday À1 , i.p.) decreased plasma TNF-α levels and it increased skeletal muscle volume, cross-sectional area of myofibers, weights of the gastrocnemius and tibialis anterior muscles, forelimb grip strength and locomotion.Conclusions and Implications: These findings reveal that triptolide prevented LPS-induced inflammation and skeletal muscle atrophy and have implications for the discovery of novel agents for preventing muscle wasting.
Background: Early relapse in colorectal cancer (CRC) patients is attributed mainly to the higher malignant entity (such as an unfavorable genotype, deeper tumor invasion, lymph node metastasis and advance cancer stage) and poor response to chemotherapy. Several investigations have demonstrated that genetic polymorphisms in drug-targeted genes, metabolizing enzymes, and DNA-repairing enzymes are all strongly correlated with inter-individual differences in the efficacy and toxicity of many treatment regimens. This preliminary study attempts to identify the correlation between genetic polymorphisms and clinicopathological features of CRC, and evaluates the relationship between genetic polymorphisms and chemotherapeutic susceptibility of Taiwanese CRC patients. To our knowledge, this study discusses, for the first time, early cancer relapse and its indication by multiple genes.
Growth differentiation factor-10 (GDF10), commonly referred as BMP3b, is a member of the transforming growth factor-β (TGF-β) superfamily. GDF10/BMP3b has been considered as a tumor suppressor, however, little is known about the molecular mechanism of its roles in tumor suppression in oral cancer. Clinical significance of GDF10 downregulation in oral squamous cell carcinoma (OSCC) was evaluated using three independent cohorts of OSCC patients. The molecular mechanisms of GDF10 in the suppression of cell survival, cell migration/invasion and epithelial-mesenchymal transition (EMT) were investigated by using oral cancer cell lines. The present study shows that GDF10 is downregulated during oral carcinogenesis, and GDF10 expression is also an independent risk factor for overall survival of OSCC patients. Overexpression of GDF10 attenuates cell proliferation, transformation, migration/invasion, and EMT. GDF10-inhibited EMT is mediated by ERK signaling but not by typical TGF-β signaling. In addition, overexpression of GDF10 promotes DNA damage-induced apoptosis and sensitizes the response to all-trans retinoic acid (ATRA) and camptothecin (CPT). Intriguingly, the expression of GDF10 is induced by type III TGF-β receptor (TGFBR3) through TGF-β-SMAD2/3 signaling. Our findings suggest that TGFBR3 is an upstream activator of GDF10 expression and they share the same signaling to inhibit EMT and migration/invasion. These results support that GDF10 acts as a hinge to collaborate with TGFBR3 in the transition of EMT-MET program. Taken together, we illustrated the clinical significance and the molecular mechanisms of tumor-suppressive GDF10 in OSCC.
The results of the present study highly suggest that GSTP1, MDR1, and MTHFR genotypes could be prognostic factors for Taiwanese patients with breast cancer.
Hyperbaric oxygen therapy (HBOT) has been suggested as a potential adjunctive therapy for Parkinson’s disease (PD). PD is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The aim of this study was to investigate the protective mechanisms of HBOT on neurons and motor function in a 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and 1-methyl-4-phenylpyridinium (MPP+)-mediated neurotoxicity in SH-SY5Y cells on the potential protective capability. In vivo: male C57BL/6 mice were randomly divided into three groups: MPTP group, MPTP+HBOT group, and control. The MPTP-treated mice were intraperitoneally administered MPTP (20 mg/kg) four times at 2 h intervals each day. The day after MPTP treatment, MPTP+HBOT mice were exposed to hyperbaric oxygen at 2.5 atmosphere absolute (ATA) with 100% oxygen for 1 h once daily for 7 consecutive days. In vitro: retinoic acid (RA)-differentiated SH-SY5Y cells were treated with MPP+ for 1 h followed by hyperbaric oxygen at 2.5 ATA with 100% oxygen for 1 h. The results showed that MPTP induced a significant loss in tyrosine hydroxylase (TH)-positive neurons in the SNpc of mice. HBOT treatment significantly increased the number of TH-positive neurons, with enhanced neurotrophic factor BDNF, decreased apoptotic signaling and attenuated inflammatory mediators in the midbrain of MPTP-treated mice. In addition, MPTP treatment decreased the locomotor activity and grip strength of mice, and these effects were shown to improve after HBOT treatment. Furthermore, MPTP decreased mitochondrial biogenesis signaling (SIRT-1, PGC-1α and TFAM), as well as mitochondrial marker VDAC expression, while HBOT treatment was shown to upregulate protein expression. In cell experiments, MPP+ reduced neurite length, while HBOT treatment attenuated neurite retraction. Conclusions: the effects of HBOT in MPTP-treated mice might come from promoting mitochondrial biogenesis, decreasing apoptotic signaling and attenuating inflammatory mediators in the midbrain, suggesting its potential benefits in PD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.