Hypoxia as one characteristic hallmark of solid tumors has been demonstrated to be involved in cancer metastasis and progression, induce severe resistance to oxygen-dependent therapies, and hamper the transportation of theranostic agents. To address these issues, an oxygen-self-produced sonodynamic therapy (SDT) nanoplatform involving a modified fluorocarbon (FC)-chain-mediated oxygen delivery protocol has been established to realize highly efficient SDT against hypoxic pancreatic cancer. In this nanoplatform, mesopores and FC chains of FC-chain-functionalized hollow mesoporous organosilica nanoparticle carriers can provide sufficient storage capacity and binding sites for sonosensitizers (IR780) and oxygen, respectively. In vitro and in vivo experiments demonstrate the nanoplatform involving this distinctive oxygen delivery protocol indeed breaks the hypoxia-specific transportation barriers, supplies sufficient oxygen to hypoxic PANC-1 cells especially upon exposure to ultrasound irradiation, and relieves hypoxia. Consequently, hypoxia-induced resistance to SDT is inhibited and sufficient highly reactive oxygen species (ROS) are produced to kill PANC-1 cells and shrink hypoxic PANC-1 pancreatic cancer. This distinctive FC-chain-mediated oxygen delivery method provides an avenue to hypoxia oxygenation and holds great potential in mitigating hypoxia-induced resistance to those oxygen-depleted therapies, e.g., photodynamic therapy, radiotherapy, and chemotherapy.
KIT gain of function mutations play an important role in the pathogenesis of gastrointestinal stromal tumors (GISTs). Imatinib is a selective tyrosine kinase inhibitor of ABL, platelet-derived growth factor receptor (PDGFR), and KIT and represents a new paradigm of targeted therapy against GISTs. Here we report for the first time that, after imatinib treatment, an additional specific and novel KIT mutation occurs in GISTs as they develop resistance to the drug. We studied 12 GIST patients with initial near-complete response to imatinib. Seven harbored mutations in KIT exon 11, and 5 harbored mutations in exon 9. Within 31 months, six imatinib-resistant rapidly progressive peritoneal implants (metastatic foci) developed in five patients. Quiescent residual GISTs persisted in seven patients. All six rapidly progressive imatinib-resistant implants from five patients show an identical novel KIT missense mutation, 1982T3 C, that resulted in Val654Ala in KIT tyrosine kinase domain 1. This novel mutation has never been reported before, is not present in pre-imatinib or post-imatinib residual quiescent GISTs, and is strongly correlated with imatinib resistance. Allelic-specific sequencing data show that this new mutation occurs in the allele that harbors original activation mutation of KIT.
Textbooks of embryology provide a standard set of drawings and text reflecting the traditional interpretation of phrenic nerve and diaphragm development based on anatomical dissections of embryonic tissue. Here, we revisit this issue, taking advantage of immunohistochemical markers for muscle precursors in conjunction with mouse mutants to perform a systematic examination of phrenic-diaphragm embryogenesis. This includes examining the spatiotemporal relationship of phrenic axon outgrowth and muscle precursors during different stages of myogenesis. Additionally, mutant mice lacking c-met receptors were used to visualize the mesenchymal substratum of the developing diaphragm in the absence of myogenic cells. We found no evidence for contributions to the diaphragm musculature from the lateral body wall, septum transversum, or esophageal mesenchyme, as standard dogma would state. Nor did the data support the hypothesis that the crural diaphragm is of distinct embryological origins. Rather, we found that myogenic cells and axons destined to form the neuromuscular component of the diaphragm coalesce within the pleuroperitoneal fold (PPF). It is the expansion of these components of the PPF that leads to the formation of the diaphragm. Furthermore, we extended these studies to examine the developing diaphragm in an animal model of congenital diaphragmatic hernia (CDH). We find that malformation of the PPF mesenchymal substratum leads to the defect characteristic of CDH. In summary, the data demonstrates that a significant revision of narratives describing normal and pathological development of the diaphragm is warranted.
Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1–fibrinogen–ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression.
The emergence of fibroblast growth factor receptor (FGFR) family fusions across diverse cancers has brought attention to FGFR-derived cancer therapies. The discovery of the first recurrent FGFR fusion in glioblastoma was followed by discoveries of FGFR fusions in bladder, lung, breast, thyroid, oral, and prostate cancers. Drug targeting of FGFR fusions has shown promising results and should soon be translating into clinical trials. FGFR fusions form as a result of various mechanisms – predominantly deletion for FGFR1, translocation for FGFR2, and tandem duplication for FGFR3. The ability to exploit the unique targetability of FGFR fusions proves that FGFR-derived therapies could have a promising future in cancer therapeutics. Drug targeting of fusion genes has proven to be an extremely effective therapeutic approach for cancers such as the recurrent BCR–ABL1 fusion in chronic myeloid leukaemia. The recent discovery of recurrent FGFR family fusions in several cancer types has brought to attention the unique therapeutic potential for FGFR-positive patients. Understanding the diverse mechanisms of FGFR fusion formation and their oncogenic potential will shed light on the impact of FGFR-derived therapy in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.