Triplets extraction is an essential and pivotal step in automatic knowledge base construction, which captures structural information from unstructured text corpus. Conventional extraction models use a pipeline of named entity recognition and relation classification to extract entities and relations, respectively, which ignore the connection between the two tasks. Recently, several neural network-based models were proposed to tackle the problem, and achieved state-of-the-art performance. However, most of them are unable to extract multiple triplets from a single sentence, which are yet commonly seen in real-life scenarios. To close the gap, we propose in this paper a joint neural extraction model for multitriplets, namely, TME, which is capable of adaptively discovering multiple triplets simultaneously in a sentence via ranking with translation mechanism. In experiment, TME exhibits superior performance and achieves an improvement of 37.6% on F1 score over state-of-the-art competitors.
Membrane transport proteins and their substrate specificities play crucial roles in a variety of cellular functions. Identifying the substrate specificities of membrane transport proteins is closely related to the protein-target interaction prediction, drug design, membrane recruitment, and dysregulation analysis. However, experimental methods to this aim are time consuming, labor intensive, and costly. Therefore, we proposed a novel method basing on support vector machine (SVM) to predict substrate specificities of membrane transport proteins by integrating features from position-specific score matrix (PSSM), PROFEAT, and Gene Ontology (GO). Finally, jackknife cross-validation tests were adopted on a benchmark and independent datasets to measure the performance of the proposed method. The overall accuracy of 96.16 and 80.45 percent were obtained for two datasets, which are higher (from 2.12 to 20.44 percent) than that by the state-of-the-art tool. Comparison results indicate that the proposed model is more reliable and efficient for accurate prediction the substrate specificities of membrane transport proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.