Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM)1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory2–5. Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware6–17, it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST18 and 85.7 percent on CIFAR-1019 image classification, 84.7-percent accuracy on Google speech command recognition20, and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task.
Energy efficient hardware implementation of artificial neural network is challenging due the 'memory-wall' bottleneck. Neuromorphic computing promises to address this challenge by eliminating data movement to and from off-chip memory devices. Emerging non-volatile memory (NVM) devices that exhibit gradual changes in resistivity are a key enabler of in-memory computing-a type of neuromorphic computing. In this paper, we present a review of some of the NVM devices (RRAM, CBRAM, PCM) commonly used in neuromorphic application. The review focuses on the trade-off between device parameters such as retention, endurance, device-to-device variation, speed and resistance levels, and the interplay with target applications. This work aims at providing guidance for finding the optimized resistive memory devices material stack suitable for neuromorphic application.
Memristive technology has been rapidly emerging as a potential alternative to traditional CMOS technology, which is facing fundamental limitations in its development. Since oxide-based resistive switches were demonstrated as memristors in 2008, memristive devices have garnered significant attention due to their biomimetic memory properties, which promise to significantly improve power consumption in computing applications. Here, we provide a comprehensive overview of recent advances in memristive technology, including memristive devices, theory, algorithms, architectures, and systems. In addition, we discuss research directions for various applications of memristive technology including hardware accelerators for artificial intelligence, in-sensor computing, and probabilistic computing. Finally, we provide a forward-looking perspective on the future of memristive technology, outlining the challenges and opportunities for further research and innovation in this field. By providing an up-to-date overview of the state-of-the-art in memristive technology, this review aims to inform and inspire further research in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.