Four series of tests were performed in an accelerated deposition test facility to study the independent effects of particle size, gas temperature, and metal temperature on ash deposits from two candidate power turbine synfuels (coal and petcoke). The facility matches the gas temperature and velocity of modern first stage high pressure turbine vanes while accelerating the deposition process. Particle size was found to have a significant effect on capture efficiency with larger particles causing significant thermal barrier coating (TBC) spallation during a 4 h accelerated test. In the second series of tests, particle deposition rate was found to decrease with decreasing gas temperature. The threshold gas temperature for deposition was approximately 960°C. In the third and fourth test series, impingement cooling was applied to the back side of the target coupon to simulate internal vane cooling. Capture efficiency was reduced with increasing mass flow of coolant air; however, at low levels of cooling, the deposits attached more tenaciously to the TBC layer. Postexposure analyses of the third test series (scanning electron microscopy and X-ray spectroscopy) show decreasing TBC damage with increased cooling levels.
Deposition on film-cooled turbine components was studied in an accelerated test facility. The accelerated deposition facility seeds a natural-gas burning combustor with finely-ground coal ash particulate at 1180°C and 180 m/s (M = 0.25). Both cylindrical and shaped holes, with and without TBC coating, were studied over a range of blowing ratios from 0.5 to 4.0. Coolant density ratios were maintained at values from 2.1 to 2.4. Deposition patterns generated with the cylindrical film cooling holes indicated regions of low deposition in the path of the coolant, with heightened deposition between film holes. This distinctive pattern was more accentuated at higher blowing ratios. Optical temperature measurements of the turbine component surface during deposition showed elevated temperatures between coolant paths. This temperature non-uniformity became more accentuated as deposition increased, highlighting a mechanism for deposition growth that has been documented on in-service turbines as well. The shaped-hole components exhibited little or no deposition in the region just downstream of the holes, due to the distributed coolant film. Close cylindrical hole spacing of 2.25d displayed similar behavior to the shaped hole configuration.
Four series of tests were performed in an accelerated deposition test facility to study the independent effects of particle size, gas temperature, and metal temperature on ash deposits from two candidate power turbine synfuels. The facility matches the gas temperature and velocity of modern first stage high pressure turbine vanes while accelerating the deposition process. This is done by matching the net throughput of particulate out of the combustor with that experienced by a modern power turbine. In the first series of tests, four different size particles were studied by seeding a natural-gas combustor with finely-ground coal ash particulate. The entrained ash particles were accelerated to a combustor exit flow Mach number of 0.25 before impinging on a thermal barrier coated (TBC) target coupon at 1183°C. Particle size was found to have a significant effect on capture efficiency with larger particles causing significant TBC spallation during a 4-hour accelerated test. In the second series of tests, different gas temperatures were studied while the facility maintained a constant exit velocity of 170m/s (Mach = 0.23–0.26). Coal ash with a mass mean diameter of 3 μm was used. Particle deposition rate was found to decrease with decreasing gas temperature. The threshold gas temperature for deposition was approximately 960°C. In the third and fourth test series impingement cooling was applied to the backside of the target coupon to simulate internal vane cooling. Ground coal and petcoke ash particulates were used for the two tests respectively. Capture efficiency was reduced with increasing massflow of coolant air, however at low levels of cooling the deposits attached more tenaciously to the TBC layer. Post exposure analyses of the third test series (scanning electron microscopy and x-ray spectroscopy) show decreasing TBC damage with increased cooling levels. Implications for the power generation goal of fuel flexibility are discussed.
Existing experimental ash particle deposition measurements from the literature have been simulated using the computational fluid dynamics (CFD) discrete phase model (DPM) Lagrangian particle tracking method and an existing ash particle deposition model based on the Johnson-Kendall-Roberts (JKR) theory, in the Fluent commercial CFD code. The experimental heating tube was developed to simulate ash temperature histories in a gasifier; ash-heating temperatures ranged from 1873 to 1573 K, spanning the ash-melting temperature. The present simulations used the realizable k-ε turbulence model to compute the gas flow field and the heat transfer to a cooled steel particle impact probe and DPM particle tracking for the particle trajectories and temperatures. A user-defined function (UDF) was developed to describe particle sticking/ rebounding and particle detachment on the impinged wall surface. Expressions for the ash particle Young's modulus in the model, E, versus the particle temperature and diameter were developed by fitting to the E values that were required to match the experimental ash sticking efficiencies from several particle size cuts and ash-heating temperatures for a Japanese bituminous coal. A UDF that implemented the developed stiffness parameter equations was then used to predict the particle sticking efficiency, impact efficiency, and capture efficiency for the entire ash-heating temperature range. Frequency histogram comparisons of adhesion and rebound behavior by particle size between model and experiments showed good agreement for each of the four ash-heating temperatures. However, to apply the present particle deposition model to other coals, a similar validation process would be necessary to develop the effective Young's modulus versus the particle diameter and temperature correlation for each new coal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.