We have previously shown that PPAR-γ agonist 15d-PGJ2 inhibited neuronal autophagy after cerebral ischemia/reperfusion injury. However, the underlying mechanism of its regulatory role in neuronal autophagy remains unclear. This study was designed to test the hypothesis that 15d-PGJ2 upregulated Bcl-2 which binds to Beclin 1, and thereby inhibits autophagy. We performed cell viability assay, cytotoxicity assay, western blot, and co-immunoprecipitation to analyze autophagy activities in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R). OGD/R induced autophagy in cultured cortical neurons. 15d-PGJ2 treatment significantly decreased LC3-II/LC3-I ratio and Beclin 1 expression, but increased p62 expression. Autophagic inhibitor 3-methyladenine decreased LC3-II levels, increased neuronal cell viability, and mimicked some protective effect of 15d-PGJ2 against OGD/R injury. OGD/R-induced autophagy coincided with decreases in Bcl-2 expression and increases in Beclin 1 expression. 15d-PGJ2 treatment upregulated Bcl-2 expression and decreased Beclin 1 expression, and inhibit the dissociation of Beclin1 from Bcl-2 significantly. Bcl-2 siRNA abrogated the effect of 15d-PGJ2 on Beclin 1, LC3-II and p62, and influence cell viability and LDH level, while scRNA did not. PPAR-γ agonist 15d-PGJ2 exerts neuroprotection partially via inhibiting neuronal autophagy after OGD/R injury. The inhibition of autophagy by 15d-PGJ2 is mediated through upregulation of Bcl-2.
According to the facts that the patient has been immunized with HB vaccine and that the serum is anti-HBs positive and HBsAg negative, and based on the nucleotide sequence analysis of the mutant HBV S gene and its alteration of antigenicity, the HBV is considered to be a new vaccine-induced immune escape mutant different from the known ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.