Coronavirus Disease 2019 (COVID-19) has created a global pandemic. Global epidemiological results show that elderly men are susceptible to infection of COVID-19. The difference in the number of cases reported by gender increases progressively in favor of male subjects up to the age group ≥60–69 (66.6%) and ≥70–79 (66.1%). Through literature search and analysis, we also found that men are more susceptible to SARS-CoV-2 infection than women. In addition, men with COVID-19 have a higher mortality rate than women. Male represents 73% of deaths in China, 59% in South Korea, and 61.8% in the United States. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the pathogen of COVID-19, which is transmitted through respiratory droplets, direct and indirect contact. Genomic analysis has shown that SARS-CoV-2 is 79% identical to SARS-CoV, and both use angiotensin-converting enzyme 2 (ACE2) as the receptor for invading cells. In addition, Transmembrane serine protease 2 (TMPRSS2) can enhance ACE2-mediated virus entry. However, SARS-CoV-2 has a high affinity with human ACE2, and its consequences are more serious than other coronaviruses. ACE2 acts as a “gate” for viruses to invade cells and is closely related to the clinical manifestations of COVID-19. Studies have found that ACE2 and TMPRSS2 are expressed in the testis and male reproductive tract and are regulated by testosterone. Mature spermatozoon even has all the machinery required to bind SARS-CoV-2, and these considerations raise the possibility that spermatozoa could act as potential vectors of this highly infectious disease. This review summarizes the gender differences in the pathogenesis and clinical manifestations of COVID-19 and proposes the possible mechanism of orchitis caused by SARS-CoV-2 and the potential transmission route of the virus. In the context of the pandemic, these data will improve the understanding of the poor clinical outcomes in male patients with COVID-19 and the design of new strategies to prevent and treat SARS-CoV-2 infection.
The severe acute respiratory coronavirus 2 (SARS-CoV-2) has become a life-threatening pandemic. Clinical evidence suggests that kidney involvement is common and might lead to mild proteinuria and even advanced acute kidney injury (AKI). Moreover, AKI caused by coronavirus disease 2019 (COVID-19) has been reported in several countries and regions, resulting in high patient mortality. COVID-19‐induced kidney injury is affected by several factors including direct kidney injury mediated by the combination of virus and angiotensin-converting enzyme 2, immune response dysregulation, cytokine storm driven by SARS-CoV-2 infection, organ interactions, hypercoagulable state, and endothelial dysfunction. In this review, we summarized the mechanism of AKI caused by SARS-CoV-2 infection through literature search and analysis.
Coronavirus disease 2019(COVID-19) has become a public health emergency of concern worldwide. COVID-19 is a new infectious disease arising from Coronavirus 2 (SARS-CoV-2). It has a strong transmission capacity and can cause severe and even fatal respiratory diseases. It can also affect other organs such as the heart, kidneys and digestive tract. Clinical evidence indicates that kidney injury is a common complication of COVID-19, and acute kidney injury (AKI) may even occur in severely ill patients. Data from China and the United States showed that male sex, Black race, the elderly, chronic kidney disease, diabetes, hypertension, cardiovascular disease, and higher body mass index are associated with COVID-19‐induced AKI. In this review, we found gender and ethnic differences in the occurrence and development of AKI in patients with COVID-19 through literature search and analysis. By summarizing the mechanism of gender and ethnic differences in AKI among patients with COVID-19, we found that male and Black race have more progress to COVID-19-induced AKI than their counterparts.
The vehicular-to-everything (V2X) technology has recently drawn a number of attentions from both academic and industrial areas. However, the openness of the wireless communication system makes it more vulnerable to identity impersonation and information tampering. How to employ the powerful radio frequency fingerprint (RFF) identification technology in V2X systems turns out to be a vital and also challenging task. In this paper, we propose a novel RFF extraction method for Long Term Evolution-V2X (LTE-V2X) systems. In order to conquer the difficulty of extracting transmitter RFF in the presence of wireless channel and receiver noise, we first estimate the wireless channel which excludes the RFF. Then, we remove the impact of the wireless channel based on the channel estimate and obtain initial RFF features. Finally, we conduct RFF denoising to enhance the quality of the initial RFF. Simulation and experiment results both demonstrate that our proposed RFF extraction scheme achieves a high identification accuracy. Furthermore, the performance is also robust to the vehicle speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.