La-doped lithium-rich layered oxide material Li1.2Mn0.54-xNi0.13Co0.13LaxO2 (x = 0.01, 0.02, 0.03) is firstly synthesized via a solvothermal method and subsequent high-temperature calcination technique. The effects of La substitution for partial Mn on the structure and electrochemical performance of materials are systematically studied by inductively coupled plasma optical emission spectroscopy (ICP-OES), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electrochemical measurement. The results reveal that La is effectively and homogenously doped into the materials, which can expand pathway for intercalation/deintercalation of Li + ions. In addition, owing to La doping, the Li1.2Mn0.52Ni0.13Co0.13La0.02O2 sample exhibits 93.2% capacity retention after 100 cycles at 1 C. More importantly, this doping can effectively restrain the decrease of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.