Defensive chemicals are used by plants and animals to reduce the risk of predation through different mechanisms, including toxins that cause injury and harm (weapons) and unpalatable or odiferous compounds that prevent attacks (deterrents). However, whether effective defences are both toxins and deterrents, or work in just one modality is often unclear.
In this study, our primary aim was to determine whether defensive compounds stored by nudibranch molluscs acted as weapons (in terms of being toxic), deterrents (in terms of being distasteful) or both. Our secondary aim was to investigate the response of different taxa to these defensive compounds.
To do this, we identified secondary metabolites in 30 species of nudibranch molluscs and investigated their deterrent properties using antifeedant assays with three taxa: rock pool shrimp, Palaemon serenus, and two fish species: triggerfish Rhinecanthus aculeatus and toadfish Tetractenos hamiltoni. We compared these results to toxicity assays using brine shrimp Artemia sp. and previously published toxicity data with a damselfish Chromis viridis.
Overall, we found no clear relationship between palatability and toxicity, but instead classified defensive compounds into the following categories: Class I & II—highly unpalatable and highly toxic; Class I—weakly unpalatable and highly toxic; Class II—highly unpalatable but weakly toxic; WR (weak response)—weakly unpalatable and weakly toxic. We also found eight extracts from six species that did not display activity in any assays indicating they may have very limited chemical defensive mechanisms (NR, no response). We found that the different classes of secondary metabolites were similarly unpalatable to fish and shrimp, except extracts from Phyllidiidae nudibranchs (isonitriles) that were highly unpalatable to shrimp but weakly unpalatable to fish.
Our results pave the way towards better understanding how animal chemical defences work against a variety of predators. We highlight the need to disentangle weapons and deterrents in future work on anti‐predator defences to better understand the foraging decisions faced by predators, the resultant selection pressures imposed on prey and the evolution of different anti‐predator strategies.
In this paper, we
investigate the presence of latrunculin A in
the outer rim of a nudibranch Chromodoris kuiteri and show that by combining ultrathin cryosection methods with MALDI
MSI we can achieve improved lateral (x and y) resolution and very high resolution in the z dimension by virtue of the ultrathin 200 nm thin cryosections. We
also demonstrate that a post ionization laser increases sensitivity.
Recent advances in MALDI source design have improved the lateral resolution
(x and y) and sensitivity during
MSI. Taken together, very high z resolution, from
ultrathin sections, and improved lateral (x and y) resolution will allow for subcellular molecular imaging
with the potential for subcellular 3D volume reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.