Large-area, continuous monolayer WS2 exhibits great potential for future micro-nanodevice applications due to its special electrical properties and mechanical flexibility. In this work, the front opening quartz boat is used to increase the amount of sulfur (S) vapor under the sapphire substrate, which is critical for achieving large-area films during the chemical vapor deposition processes. COMSOL simulations reveal that the front opening quartz boat will significantly introduce gas distribute under the sapphire substrate. Moreover, the gas velocity and height of substrate away from the tube bottom will also affect the substrate temperature. By carefully optimizing the gas velocity, temperature, and height of substrate away from the tube bottom, a large-scale continues monolayered WS2 film was achieved. Field-effect transistor based on the as-grown monolayer WS2 showed a mobility of 3.76 cm2V−1 s−1 and ON/OFF ratio of 106. In addition, a flexible WS2/PEN strain sensor with a gauge factor of 306 was fabricated, showing great potential for applications in wearable biosensors, health monitoring, and human–computer interaction.
Miniaturized gas pumps based on electromagnetic effect have been intensively studied and widely applied in industries. However, the electromagnetic effect-based gas pumps normally have large sizes, high levels of noises and high power consumption, thus they are not suitable for wearable/portable applications. Herein, we propose a high-flowrate and high-pressure load valveless piezoelectric micropump with dimensions of 16 mm*16 mm*5 mm. The working frequency, vibration mode and displacement of the piezoelectric actuator, the velocity of gas flow, and the volume flowrate of the micropump are analyzed using the finite element analysis method. The maximum vibration amplitude of the piezoelectric actuator reaches ~29.4 μm. The output gas flowrate of the pump is approximately 135 mL/min, and the maximum output pressure exceeds 40 kPa. Then, a prototype of the piezoelectric micropump is fabricated. Results show that performance of the micropump is highly consistent with the numerical analysis with a high flowrate and pressure load, demonstrated its great potential for wearable/portable applications, especially for blood pressure monitoring.
This Letter reports a new bulk acoustic wave (BAW) filter based on
single crystal AlN piezoelectric film which has the potential
application in 5G wireless communication. The single crystal AlN is
deposited on SiC substrate by MOCVD and the air-cavity structure BAW
device is fabricated. Testing results show that the fabricated
resonators have Q-factor up to 837 and electromechanical coupling
coefficient up to 7.2% with resonant frequency 3.2 GHz. The ladder-type
filters are also developed on the same wafer, which have a center
frequency of 3.38 GHz and 3 dB bandwidth 160 MHz, minimum insertion loss
of 1.5 dB, and out-of-band rejection above 31dB. High performance of the
filters comes from low defects of the single crystal AlN film, which
demonstrates promising potential of single crystal AlN filters in 5G and
future 6G applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.