The field of skyrmionics has been actively investigated across a wide range of topics during the last decade. In this topical review, we review and discuss key results and findings in skyrmionics since the first experimental observation of magnetic skyrmions in 2009. We particularly focus on the theoretical, computational and experimental findings and advances that are directly relevant to the spintronic applications based on magnetic skyrmions, i.e. their writing, deleting, reading and processing driven by magnetic field, electric current and thermal energy. We then review several potential applications including information storage, logic computing gates and non-conventional devices such as neuromorphic computing devices. Finally, we discuss possible future research directions on magnetic skyrmions, which also cover rich topics on other topological textures such as antiskyrmions and bimerons in antiferromagnets and frustrated magnets.
Since the experimental discovery of magnetic skyrmions achieved one decade ago 1 , there have been significant efforts to bring the virtual particles into all-electrical fully functional devices, inspired by their fascinating physical and topological properties suitable for future low-power electronics 2 . Here, we experimentally demonstrate such a deviceelectrically-operating skyrmion-based artificial synaptic device designed for neuromorphic computing. We present that controlled current-induced creation, motion, detection and deletion of skyrmions in ferrimagnetic multilayers can be harnessed in a single device at room temperature to imitate the behaviors of biological synapses. Using simulations, we demonstrate that such skyrmion-based synapses could be used to perform neuromorphic pattern-recognition computing using handwritten recognition data set, reaching to the accuracy of ~89%, comparable to the software-based training accuracy of ~94%. Chip-level simulation then highlights the potential of skyrmion synapse compared to existing technologies. Our findings experimentally illustrate the basic concepts of skyrmion-based fully functional electronic devices while providing a new building block in the emerging field of spintronics-based bio-inspired computing.
A magnetic skyrmionium is a nontopological soliton, which has a doughnut-like out-of-plane spin texture in thin films, and can be phenomenologically viewed as a coalition of two topological magnetic skyrmions with opposite topological numbers. Due to its zero topological number ($Q=0$) and doughnut-like structure, the skyrmionium has its distinctive characteristics as compared to the skyrmion with $Q=\pm 1$. Here we systematically study the generation, manipulation and motion of a skyrmionium in ultrathin magnetic nanostructures by applying a magnetic field or a spin-polarized current. It is found that the skyrmionium moves faster than the skyrmion when they are driven by the out-of-plane current, and their velocity difference is proportional to the driving force. However, the skyrmionium and skyrmion exhibit an identical current-velocity relation when they are driven by the in-plane current. It is also found that a moving skyrmionium is less deformed in the current-in-plane geometry compared with the skyrmionum in the current-perpendicular-to-plane geometry. Furthermore we demonstrate the transformation of a skyrmionium with $Q=0$ into two skyrmions with $Q=+1$ in a nanotrack driven by a spin-polarized current, which can be seen as the unzipping process of a skyrmionium. We illustrate the energy and spin structure variations during the skyrmionium unzipping process, where linear relations between the spin structure and energies are found. These results could have technological implications in the emerging field of skyrmionics.Comment: 14 pages, 15 figure
The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.