Cucumber gray mold caused by Botrytis cinerea is considered one of the most serious cucumber diseases. With the advent of Hi-seq technology, it is possible to study the plant–pathogen interaction at the transcriptome level. To the best of our knowledge, this is the first application of RNA-seq to identify cucumber and B. cinerea differentially expressed genes (DEGs) before and after the plant–pathogen interaction. In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. This is the first systematic transcriptome analysis of components related to the B. cinerea–cucumber interaction. Functional genes and putative pathways identified herein will increase our understanding of the mechanism of the pathogen–host interaction.
Tobacco leaf discs were transformed with a plasmid, pBIPTA, containing the selectable marker neomycin phosphotransferase gene (nptII) and Pinellia ternata agglutinin gene (pta) via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic tobacco plants were regenerated. PCR and Southern blot analyses confirmed that the pta gene had integrated into the plant genome and northern blot analysis revealed transgene expression at various levels in transgenic plants. Genetic analysis confirmed Mendelian segregation of the transgene in T1 progeny. Insect bioassays showed that transgenic plants expressing PTA inhibited significantly the growth of peach potato aphid (Myzus persicae Sulzer). This is the first report that transgenic plants expressing pta confer enhanced resistance to aphids. Our study indicates that the pta gene can be used as a supplement to the snowdrop (Galanthus nivalis) lectin gene (gna) in the control of aphids, a sap-sucking insect pest causing significant yield losses of crops.
Arabidopsis Senescence-Associated Subtilisin Protease (SASP) has previously been reported to participate in leaf senescence and in the development of inflorescences and siliques. Here, we describe a new role of SASP in the regulation of abscisic acid (ABA) signaling. SASP encodes a subtilase and its expression was considerably induced by darkness, ABA, and ethylene treatments. sasp knockout mutants displayed obvious developmental phenotypes such as early flowering and smaller leaves. In particular, the sasp mutants exhibited enhanced ABA sensitivity during seed germination and seedling growth, heightened ABA-mediated leaf senescence, and increased production of reactive oxygen species (ROS). Importantly, the sasp mutants also showed remarkably increased tolerance to drought, with expression of six ABA signaling-related genes being either up- or down-regulated following ABA treatment. Interaction assays demonstrated that SASP physically interacts with OPEN STOMATA 1 (OST1) at the cell periphery. Co-expression of SASP and OST1 led to degradation of OST1, whereas this degradation was impaired in sasp-1 protoplasts. ROS attenuation assays demonstrated that in sasp-1 mutant guard cells the attenuation rate markedly decreased. Taken together, the results demonstrate that SASP plays an important role in regulating ABA signaling and drought tolerance through interaction with OST1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.