In recent years, the development and research of flexible sensors have gradually deepened, and the performance of wearable, flexible devices for monitoring body temperature has also improved. For the human body, body temperature changes reflect much information about human health, and abnormal body temperature changes usually indicate poor health. Although body temperature is independent of the environment, the body surface temperature is easily affected by the surrounding environment, bringing challenges to body temperature monitoring equipment. To achieve real-time and sensitive detection of various parts temperature of the human body, researchers have developed many different types of high-sensitivity flexible temperature sensors, perfecting the function of electronic skin, and also proposed many practical applications. This article reviews the current research status of highly sensitive patterned flexible temperature sensors used to monitor body temperature changes. First, commonly used substrates and active materials for flexible temperature sensors have been summarized. Second, patterned fabricating methods and processes of flexible temperature sensors are introduced. Then, flexible temperature sensing performance are comprehensively discussed, including temperature measurement range, sensitivity, response time, temperature resolution. Finally, the application of flexible temperature sensors based on highly delicate patterning are demonstrated, and the future challenges of flexible temperature sensors have prospected.
Rapid glucose testing is very important in the care of diabetes. Monitoring of blood glucose is the most critical indicator of disease control in diabetic patients. The invention and popularity of electrochemical sensors have made glucose detection fast and inexpensive. The first generation of glucose sensors had limitations in terms of sensitivity and selectivity. In order to overcome these problems, scientists have used a range of new materials to produce new glucose electrochemical sensors with higher sensitivity, selectivity and lower cost. A variety of different electrochemical sensors including enzymatic electrochemical sensors and enzyme-free electrochemical sensors have been extensively investigated. We discussed the development process of electrochemical glucose sensors in this review. We focused on describing the benefits of carbon materials in nanomaterials, specially graphene for sensors. In addition, we discussed the limitations of the sensors and challenges in future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.