Background Heavy metal toxicity has become a major threat to sustainable crop production worldwide. Thus, considerable interest has been placed on deciphering the mechanisms that allow plants to combat heavy metal stress. Strategies to deal with heavy metals are largely focused on detoxification, transport and/or sequestration. The P 1B subfamily of the H eavy M etal-transporting P-type A TPases (HMAs) was shown to play a crucial role in the uptake and translocation of heavy metals in plants. Here, we report the locus-specific expression changes in the rice HMA genes together with several low-copy cellular genes and transposable elements upon the heavy metal treatment and monitored the transgenerational inheritance of the altered expression states. We reveal that plants cope with heavy metal stress by making heritable changes in gene expression and further determined gene-specific responses to heavy metal stress. Results We found most HMA genes were upregulated in response to heavy metal stress, and furthermore found evidence of transgenerational memory via changes in gene regulation even after the removal of heavy metals. To explore whether DNA methylation was also altered in response to the heavy metal stress, we selected a Tos17 retrotransposon for bisulfite sequencing and studied its methylation state across three generations. We found the DNA methylation state of Tos17 was altered in response to the heavy metal stress and showed transgenerational inheritance. Conclusions Collectively, the present study elucidates heritable changes in gene expression and DNA methylation in rice upon exposure to heavy metal stress and discusses implications of this knowledge in breeding for heavy metal tolerant crops. Electronic supplementary material The online version of this article (10.1186/s12870-019-1887-7) contains supplementary material, which is available to authorized users.
Summary Abscisic acid (ABA) plays a crucial role in the adaptation of young seedlings to environmental stresses. However, the role of epigenetic components and core transcriptional machineries in the effect of ABA on seed germination and seedling growth remain unclear. Here, we show that a histone 3 lysine 4 (H3K4) demethylase, JMJ17, regulates the expression of ABA‐responsive genes during seed germination and seedling growth. Using comparative interactomics, WRKY40, a central transcriptional repressor in ABA signaling, was shown to interact with JMJ17. WRKY40 facilitates the recruitment of JMJ17 to the ABI5 chromatin, which removes gene activation marks (H3K4me3) from the ABI5 chromatin, thereby repressing its expression. Additionally, WRKY40 represses the transcriptional activation activity of HY5, which can activate ABI5 expression by directly binding to its promoter. An increase in ABA concentrations decreases the affinity of WRKY40 for the ABI5 promoter. Thus, WRKY40 and JMJ17 are released from the ABI5 chromatin, activating HY5. The accumulated ABI5 protein further shows heteromeric interaction with HY5, and thus synergistically activates its own expression. Our findings reveal a novel transcriptional switch, composed of JMJ17–WRKY40 and HY5–ABI5 modules, which regulates the ABA response during seed germination and seedling development in Arabidopsis.
To isolate the genetic locus responsible for saline-alkaline stress tolerance, we developed a high-throughput activation tagging-based T-DNA insertion mutagenesis method using the model rice (Oryza sativa L.) variety Kitaake. One of the activation-tagged insertion lines, activation tagging 7 (AC7), showed increased tolerance to saline-alkaline stress. This phenotype resulted from the overexpression of a gene that encodes a SET DOMAIN GROUP 721 protein with H3K4 methyltransferase activity. Transgenic plants overexpressing OsSDG721 showed saline-alkaline stress-tolerant phenotypes, along with increased leaf angle, advanced heading and ripening dates. By contrast, ossdg721 loss-of-function mutants showed increased sensitivity to saline-alkaline stress characterized by decreased survival rates and reduction in plant height, grain size, grain weight and leaf angle. RNA sequencing (RNAseq) analysis of wild-type Kitaake and ossdg721 mutants indicated that OsSDG721 positively regulates the expression level of HIGH-AFFINITY POTASSIUM (K + ) TRANSPORTER1;5 (OsHKT1;5), which encodes a Na + -selective transporter that maintains K + /Na + homeostasis under salt stress. Furthermore, we showed that OsSDG721 binds to and deposits the H3K4me3 mark in the promoter and coding region of OsHKT1;5, thereby upregulating OsHKT1;5 expression under saline-alkaline stress. Overall, by generating Kitaake activationtagging pools, we established that the H3K4 methyltransferase OsSDG721 enhances salinealkaline stress tolerance in rice.
Nitrate is the main source of nitrogen for plants and an essential component of fertilizers. Rapid transcriptional activation of genes encoding the high-affinity nitrate transport system (HATS) is an important strategy that plants use to cope with nitrogen deficiency. However, the specific transcriptional machineries involved in this process and the detailed transcriptional regulatory mechanism of the core HATS remain poorly understood. ZmCHB101 is the core subunit of the SWI/SNF-type ATP-dependent chromatin remodeling complex in maize. RNA-interference transgenic plants (ZmCHB101-RNAi) display abaxially curling leaves and impaired tassel and cob development. Here, we demonstrate that ZmCHB101 plays a pivotal regulatory role in nitrate-responsive gene expression. ZmCHB101-RNAi lines showed accelerated root growth and increased biomass under low nitrate conditions. An RNA sequencing analysis revealed that ZmCHB101 regulates the expression of genes involved in nitrate transport, including ZmNRT2.1 and ZmNRT2.2. The NIN-like protein (NLP) of maize, ZmNLP3.1, recognized the consensus nitrate-responsive cis-elements (NREs) in the promoter regions of ZmNRT2.1 and ZmNRT2.2, and activated the transcription of these genes in response to nitrate. Intriguingly, well-positioned nucleosomes were detected at NREs in the ZmNRT2.1 and ZmNRT2.2 gene promoters, and nucleosome densities were lower in ZmCHB101-RNAi lines than in wild-type plants, both in the absence and presence of nitrate. The ZmCHB101 protein bound to NREs and was involved in the maintenance of nucleosome occupancies at these sites, which may impact the binding of ZmNLP3.1 to NREs in the absence of nitrate. However, in the presence of nitrate, the binding affinity of ZmCHB101 for NREs decreased dramatically, leading to reduced nucleosome density at NREs and consequently increased ZmNLP3.1 binding. Our results provide novel insights into the role of chromatin remodeling proteins in the regulation of nitrate-responsive gene expression in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.