Abstract. Proper quantification of the aerosol vertical height is
essential to constrain the atmospheric distribution and lifetime of
aerosols, as well as their impact on the environment. We use globally
distributed, daily averaged measurements of aerosol stereo heights of fire
aerosols from the Multi-angle Imaging SpectroRadiometer (MISR) to understand the aerosol distribution. We also connect
these results with a simple plume rise model and a new multi-linear
regression model approach based on daily measurements of NO2 from OMI and CO from MOPITT to understand and model the global aerosol vertical height profile over biomass burning regions. First, plumes associated with the local dry-burning season at midlatitudes to high latitudes frequently have a substantial fraction lofted into the free troposphere and in some cases even the stratosphere. Second, plumes mainly associated with less-polluted regions in developing countries and heavily forested areas tend to stay closer to the ground, although they are not always uniformly distributed throughout the boundary layer. Third, plumes associated with more serious loadings of pollution (such as in Africa, Southeast Asia and northeast China) tend to have a substantial amount of smoke transported uniformly through the planetary boundary layer and up to around 3 km. Fourth, the regression model approach yields a better ability to reproduce the measured heights compared to the plume rise model approach. This improvement is based on a removal of the negative bias observed from the plume model approach, as well as a better ability to work under more heavily polluted conditions. However, over many regions, both approaches fail, requiring deeper work to understand the physical, chemical and dynamical reasons underlying the failure over these regions.
New constrained emissions provide the best daily to weekly scale model fit with independent measurements in space, time, and magnitude. Increases in BC emissions from 6.6 to 11.9 times are required to match the observed aerosol loadings in free tropospheric Monsoon Asia. A new spatiotemporal pathway is observed to transport aerosols far to both the southwest and east to match extreme aerosol events.
A variance-maximization approach based on 19 years of weekly measurements of pollution in the troposphere carbon monoxide (CO) measurements quantifies the spatial-temporal distribution of global biomass burning. Seven regions consistent with existing datasets are discovered and shown to burn for longer, over a more widespread area. Each region has a unique and recurring burning season, with three dominated by inter- and intra-annual variation. The CO is primarily lofted to the free troposphere from where it spreads downwind at 800 to 700 mb with three exceptions: The Maritime Continent and South America where there is spread at 300 mb consistent with deep- and pyro-convection; and Southern Africa which reaches to 600 mb. The total mass of CO lofted into the free troposphere ranges from 46% over Central Africa to 92% over Australia. The global, annual emissions made using two different techniques lead to an increase of biomass burning CO emissions of 47TgCO/year and 99TgCO/year respectively. The larger increase is mainly due to two factors: first, a large amount of the emissions is lofted rapidly upwards over the biomass burning region and subsequently transported downwind, therefore not appearing near the biomass source in space and time and second, an increase in inter-annual variability. Consistently, there is an increase in variability year-to-year and during peak events, from which 35% to more than 80% of the total emissions is lofted into the free troposphere. The results demonstrate a significantly higher CO emission from biomass burning, a larger impact on the global atmospheric composition, and likely impacts on atmospheric chemistry and climate change.
This work addresses the relationship between major dynamical forcings and variability in NO2 column measurements. The dominating impact in Northern Southeast Asia is due to El Niño-Southern Oscillation (ENSO); in Indonesia, Northern Australia and South America is due to Indian Ocean Dipole (IOD); and in Southern China Land and Sea, Populated Northern China, Siberia, Northern and Arctic Eurasia, Central and Southern Africa, and Western US and Canada is due to North Atlantic Oscillation (NAO). That NO2 pollution in Indonesia is modulated by IOD contradicts previous work claiming that the emissions in Indonesia are a function of El Niño impacting upon Aerosol Optical Depth and Fire Radiative Power. Simultaneous impacts of concurrent and lagged forcings are derived using multi-linear regression, demonstrating ENSO impacts future NO2 variability, enhancing NO2 emissions 7–88 weeks in the future, while IOD and NAO in some cases increase the emissions from or the duration of the future burning season as measured by NO2. This impact will also extend to co-emitted aerosols and heat, which may impact the climate. In all cases, lagged forcings exhibit more impact than concurrent forcings, hinting at non-linearity coupling with soil moisture, water table, and other dynamical effects. The regression model formed demonstrates that dynamical forcings are responsible for over 45% of the NO2 emissions variability in most non-urban areas and over 30% in urban China and sub-arctic regions. These results demonstrate the significance of climate forcing on short-lived air pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.