Background Accurate and robust pathological image analysis for colorectal cancer (CRC) diagnosis is time-consuming and knowledge-intensive, but is essential for CRC patients’ treatment. The current heavy workload of pathologists in clinics/hospitals may easily lead to unconscious misdiagnosis of CRC based on daily image analyses. Methods Based on a state-of-the-art transfer-learned deep convolutional neural network in artificial intelligence (AI), we proposed a novel patch aggregation strategy for clinic CRC diagnosis using weakly labeled pathological whole-slide image (WSI) patches. This approach was trained and validated using an unprecedented and enormously large number of 170,099 patches, > 14,680 WSIs, from > 9631 subjects that covered diverse and representative clinical cases from multi-independent-sources across China, the USA, and Germany. Results Our innovative AI tool consistently and nearly perfectly agreed with (average Kappa statistic 0.896) and even often better than most of the experienced expert pathologists when tested in diagnosing CRC WSIs from multicenters. The average area under the receiver operating characteristics curve (AUC) of AI was greater than that of the pathologists (0.988 vs 0.970) and achieved the best performance among the application of other AI methods to CRC diagnosis. Our AI-generated heatmap highlights the image regions of cancer tissue/cells. Conclusions This first-ever generalizable AI system can handle large amounts of WSIs consistently and robustly without potential bias due to fatigue commonly experienced by clinical pathologists. It will drastically alleviate the heavy clinical burden of daily pathology diagnosis and improve the treatment for CRC patients. This tool is generalizable to other cancer diagnosis based on image recognition.
Background Increasing evidence suggests that human gut microbiome plays an important role in variation of skeletal muscle mass (SMM). However, specific causal mechanistic relationship of human gut microbiome with SMM remains largely unresolved. Understanding the causal mechanistic relationship may provide a basis for novel interventions for loss of SMM. This study investigated whether human gut microbiome has a causal effect on SMM among Chinese community-dwelling healthy menopausal women. Methods Estimated SMM was derived from whole-body dual-energy X-ray absorptiometry. We performed integrated analyses on whole-genome sequencing, shotgun metagenomic sequencing, and serum short-chain fatty acids (SCFAs), as well as available host SMM measurements among community-dwelling healthy menopausal women (N = 482). We combined the results with summary statistics from genome-wide association analyses for human gut microbiome (N = 952) and SMM traits (N = 28 330). As a prerequisite for causality, we used a computational protocol that was proposed to measure correlations among gut metagenome, metabolome, and the host trait to investigate the relationship between human gut microbiome and SMM. Causal inference methods were applied to assess the potential causal effects of gut microbial features on SMM, through one-sample and two-sample Mendelian randomization (MR) analyses, respectively. Results In metagenomic association analyses, the increased capacity for gut microbial synthesis of the SCFA butyrate was significantly associated with serum butyrate levels [Spearman correlation coefficient (SCC) = 0.13, P = 0.02] and skeletal muscle index (SCC = 0.084, P = 0.002). Of interest was the finding that two main butyrate-producing bacterial species were both positively associated with the increased capacity for gut microbial synthesis of butyrate [Faecalibacterium prausnitzii (SCC = 0.25, P = 6.6 × 10 À7 ) and Butyricimonas virosa (SCC = 0.15, P = 0.001)] and for skeletal muscle index [F. prausnitzii (SCC = 0.16, P = 6.2 × 10 À4 ) and B. virosa (SCC = 0.17, P = 2.4 × 10 À4 )]. One-sample MR results showed a causal effect between gut microbial synthesis of the SCFA butyrate and appendicular lean mass (β = 0.04, 95% confidence interval 0.029 to 0.051, P = 0.003). Two-sample MR results further confirmed the causal effect between gut microbial synthesis of the SCFA butyrate and appendicular lean mass (β = 0.06, 95% confidence interval 0 to 0.13, P = 0.06). Conclusions Our results may help the future development of novel intervention approaches for preventing or alleviating loss of SMM.
Observational studies have demonstrated that cardiovascular risk factors are associated with chronic kidney disease (CKD). However, these observational associations are potentially influenced by the residual confounding, including some unmeasured lifestyle factors and interaction risk factors. Two-sample mendelian randomization analysis was conducted in this study to evaluate whether genetically predicted cardiovascular risk factors have a causal effect on the risk of CKD. We selected genetic variants associated with cardiovascular risk factors and extracted the corresponding effect sizes from the largest GWAS summary-level dataset of CKD. Cardiovascular risk factors contain high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, total cholesterol (TC), triglyceride (TG), glycated hemoglobin (HbA1c), fasting glucose, systolic blood pressure (SBP) and diastolic blood pressure (DBP). A Bonferroni corrected threshold of P = 0.006 was considered as significant, and 0.006 < P < 0.05 was considered suggestive of evidence for a potential association. Genetically predicted DBP was significantly associated with CKD [odds ratio (OR) was 1.35 (95% confidence interval (CI) (1.10, 1.65); P = 0.004)]. There was suggestive evidence for potential associations between genetically predicted higher HDL cholesterol [OR: 0.88, 95%CI (0.80, 0.98), P = 0.025] and lower adds of CKD, and between higher SBP [OR: 1.36, 95%CI (1.07, 1.73), P = 0.013] and higher adds of CKD. However, genetically predicted LDL cholesterol, TC, TG, HbA1c, and fasting glucose did not show any causal association with CKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.