Increasing evidence has shown that the gut microbiota plays an important role in preventing obesity; however, the mechanism by which insoluble dietary fiber (IDF) prevents high-fat diet (HFD)-induced obesity remains unclear.
Anthocyanins have good physiological functions, but they are unstable. The interaction between anthocyanins and proteins can improve the stability, nutritional and functional properties of the complex. This paper reviews the structural changes of complex of anthocyanins interacting with proteins from different sources. By circular dichroism (CD) spectroscopy, it was found that the contents of α-helix (from 15.90%−42.40% to 17.60%−52.80%) or β-sheet (from 29.00%−50.00% to 29.40%−57.00%) of the anthocyanins–proteins complex increased. Fourier transform infrared spectroscopy showed that the regions of amide I (from 1627.87−1641.41 cm−1 to 1643.34−1651.02 cm−1) and amide II (from 1537.00−1540.25 cm−1 to 1539.00−1543.75 cm−1) of anthocyanins–proteins complex were shifted. Fluorescence spectroscopy showed that the fluorescence intensity of the complex decreased from 150−5100 to 40−3900 a.u. The thermodynamic analysis showed that there were hydrophobic interactions, electrostatic and hydrogen bonding interactions between anthocyanins and proteins. The kinetic analysis showed that the half-life and activation energy of the complex increased. The stability, antioxidant, digestion, absorption, and emulsification of the complex were improved. This provides a reference for the study and application of anthocyanins and proteins interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.